

codice rif.: 903.15.24

data emissione: 18.12.15

committente: VENETO ACQUE SPA

progetto: CONDOTTA DI ADDUZIONE PRIMARIA DN

1200 – TRATTA 34 – RITROVAMENTO DI MATERIALI DI ORIGINE ANTROPICA –

COMUNE DI FONTANIVA -

CARATTERIZZAZIONE AMBIENTALE AI

SENSI DELL'ART. 242 DEL D. LGS.

152/2006

località: COMUNE DI FONTANIVA

documento: ESITI DELLE INDAGINI AMBIENTALI

revisione: 00

autori: ROBERTO PEDRON

Studio Associato di Geologia & Società a Responsabilità limitata Contrà del Pozzetto, 4 36100 – VICENZA

Tel.: +39.0444.321.168 Fax: +39.0444.543.641

www.sinergeo.it

Progetto: CONDOTTA DI ADDUZIONE PRIMARIA DN 1200 – TRATTA 34 – RITROVAMENTO DI

MATERIALI DI ORIGINE ANTROPICA - COMUNE DI FONTANIVA - CARATTERIZZAZIONE

AMBIENTALE AI SENSI DELL'ART. 242 DEL D.LGS. 152/2006

Titolo: **ESITI DELLE INDAGINI AMBIENTALI**

Cliente: **VENETO ACQUE SPA**

Responsabile di Progetto: **ROBERTO PEDRON**

ROBERTO PEDRON Autori:

Collaboratori: LORENZO CAPPELLARO

GIANANDREA LORENZIN

Codice commessa: 903.15.24

Data: 18.12.2015

SOCIETA' A RESPONSABILITA' LIMITATA

n° 02916970243 REA 284307 cap. soc. 100.000,00€i.v. P.IVA 02683770248

P.IVA 02916970243 Iscrizione CCIAA di VI

36100 VICENZA, Contrà del Pozzetto 4, tel.:+39.0444.321.168, fax: +39.0444.543.641 - email: info@sinergeo.it

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titala	ESITI DELLE INDAGINI AMPIENTALI	•	

titolo

LIMITAZIONI DI RESPONSABILITÀ

Questo rapporto tecnico si fonda sull'applicazione di conoscenze e leggi scientifiche riconosciute ma anche di calcoli e di valutazioni professionali circa eventi o fenomeni suscettibili di interpretazione.

Le stime e le considerazioni ivi espresse sono basate su informazioni acquisite o comunque disponibili al momento dell'indagine e sono strettamente condizionate dai limiti imposti dalla tipologia e dalla consistenza dei dati utilizzabili, dalle risorse fruibili per il caso di specie, nonché dal programma di lavoro concordato con il Cliente.

Questo rapporto si basa inoltre sulla conoscenza professionale degli attuali (dicembre 2015) standard e codici, tecnologia e legislazione della Comunità Europea. Modifiche e aggiornamenti di quanto sopra citato potrebbero rendere inappropriate o scorrette le definizioni, le raccomandazioni e le indicazioni stilate

Le conclusioni ed i suggerimenti operativi contenuti nel presente rapporto vanno intesi come proposte di intervento e non come azioni vincolanti, salvo ciò non sia specificatamente indicato.

Sinergeo non intende, inoltre, fornire alcuna garanzia, espressa o implicita, utilizzabile per qualsiasi finalità, relativa allo stato di qualità ambientale di settori di territorio non indagati e, più in generale, al valore commerciale del sito in argomento.

Si tiene a precisare inoltre che le valutazioni contenute in questo rapporto sono state elaborate da tecnici e pertanto rivestono un carattere esclusivamente tecnico, non costituendo in alcun modo parere legale.

Gli Autori rispondono unicamente alla Committenza circa la corrispondenza del rapporto emesso in ordine agli obiettivi delle ricerche definite nell'ambito dell'incarico e non possono farsi carico di responsabilità per danni, rivendicazioni, perdite, azioni o spese, qualora subite anche da terzi, come risultato di decisioni prese o azioni condotte e basate sul rapporto stesso.

ABBREVIAZIONI

Riferimento a paragrafo [...]: Riferimento a capitolo

Riferimento ad altro documento in bibliografia (...): A.T.I.: Associazione Temporanea d'Impresa b.p.: Bocca pozzo / bocca piezometro

Circa ca.:

CER: Codice Europeo Rifiuti

cfr.: Confronta

CSC: Concentrazioni soglia di contaminazione (D.Lgs. 152/2006)

CTR: Carta Tecnica Regionale

D.G.R.V.: Deliberazione della Giunta Regionale del Veneto

D.Lgs.: Decreto Legislativo Dip.: Dipartimento DM: Decreto Ministeriale

EPSG: European Petroleum Survey Group

MR: Materiali di riporto p.c.: Piano di campagna

PdCA: Piano della Caratterizzazione Ambientale

Sul livello del mare s.l.m.:

Tal Quale tq:

UNI: Ente Nazionale Italiano di Unificazione

NOTE

- Nel corso della trattazione, ove si intende rimandare ad un elaborato grafico presentato f.t. si riporta il nome del a. medesimo in carattere grassetto ed in colore verde.
- b. Le figure e le tabelle in testo vengono richiamate in testo in carattere grassetto ed in colore nero.
- A seguire si presenta l'elenco completo degli elaborati, delle tabelle e delle immagini citati in testo. C.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

INDICE

1.	PRE	MESSE	1
	1.1. 1.2.	INTRODUZIONE	
2.	INQL	JADRAMENTO GENERALE DEL SITO	2
	2.1. 2.2.	CONTESTO GEOLOGICO-STRATIGRAFICO	4
3.	ATTI	IVITÀ DI INDAGINE	6
	3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	TRINCEE ESPLORATIVE	6 7 8 10
4.	DISC	CUSSIONE DEI RISULTATI	11
	4.2. 4.3. 4.4. 4.5. 4.5.1. 4.5.2. 4.5.3. 4.5.4.	TEST DI ELUIZIONE SUI MATERIALI DI RIPORTO ANALISI MERCEOLOGICA DEI MATERIALI DI RIPORTO ACQUE SOTTERRANEE	11 12 12 12 13 14
5.	CON	ISIDERAZIONI FINALI	15

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

ALLEGATI

- 01 Inquadramento geografico
- 02 Ubicazione dei punti di indagine
- 03 Schede stratigrafiche Trincee esplorative
- 04 Schede stratigrafiche Sondaggi
- 05 Distribuzione areale degli spessori dei materiali di riporto
- 06 Deflussi sotterranei rilievi del 16 luglio 2015
- 07 Deflussi sotterranei rilievi del 24 luglio 2015
- 08 Prove di permeabilità di tipo Lefranc schede interpretative
- 09 Analisi chimiche sui campioni di materiale di riporto
- 10 Analisi chimiche sui campioni di terreno naturale
- 11 Test di cessione sui materiali di riporto
- 12 Analisi merceologica sui materiali di riporto
- 13 Analisi chimiche sui campioni di acqua sotterranea
- 14 Repertorio fotografico 1 realizzazione delle trincee esplorative
- 15 Repertorio fotografico 2 realizzazione delle trincee esplorative
- 16 Repertorio fotografico 3 terebrazione dei sondaggi
- 17 Repertorio fotografico 4 campionamento delle acque sotterranee

APPENDICI

- A Relazione di indagine storica Comune di Fontaniva (PD)
- B Verbale della C.d.S. del 12 marzo 2015
- C Analisi chimiche sui materiali di riporto Rapporti di Prova del laboratorio Soveco
- D Analisi chimiche sui terreni naturali Rapporti di Prova del laboratorio Soveco
- E Test di cessione sui materiali di riporto Rapporti di Prova del laboratorio Soveco
- F Analisi chimiche sulle acque sotterranee Rapporti di Prova del laboratorio Soveco
- G Analisi merceologica dei materiali di riporto Rapporti di Prova del laboratorio Geodata
- H Analisi chimiche e test di cessione sui materiali di riporto e sui terreni naturali Rapporti di Prova del laboratorio ARPAV
- Analisi chimiche sulle acque sotterranee Rapporto di Prova del laboratorio ARPAV

ELENCO DELLE FIGURE IN TESTO

- Figura 1 Foto satellitare dell'area in studio
- Figura 2 Profilo stratigrafico e schizzo topografico dell'area di alta-media pianura veneta lungo il corso del Fiume Brenta (Dal Prà A., 1972)
- Figura 3 Schema idrogeologico concettuale della pianura veneta
- Figura 4 Estratto Carta idrogeologica dell'Alta Pianura Veneta A. Dal Prà, 1983
- Figura 5 Valori puntuali di conducibilità idraulica K (espressi in m/s) ricavati da prove Lefranc

ELENCO DELLE TABELLE IN TESTO

- Tabella 1 Caratteristiche costruttive dei piezometri
- Tabella 2 Riepilogo dati topografici (georeferenziazione dei punti prova)
- Tabella 3 Intervalli di profondità delle prove Lefranc
- Tabella 4 Elenco dei campioni di materiale di riporto e di terreno naturale prelevati dalle trincee esplorative
- Tabella 5 Parametri chimico-fisici misurati alla stabilizzazione durante la fase di spurgo ai piezometri
- Tabella 6 Riepilogo dei valori di soggiacenza di falda
- Tabella 7 Campioni di materiale di riporto sottoposti a test di cessione ai sensi del DM 186/06
- Tabella 8 Valori statistici sulla composizione merceologica dei riporti

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	aniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		_

PREMESSE

1.1. INTRODUZIONE

Su incarico e per conto di Veneto Acque Spa sono state eseguite alcune indagini ambientali presso un sito ubicato tra la SP94 e Via delle Giare in Comune di Fontaniva (PD).

L'area oggetto delle indagini è stata interessata dagli interventi relativi alla Tratta 34, che riguarda la realizzazione di una condotta DN 1200 della lunghezza di circa 13.6 km, costituente il collegamento funzionale tra il campo pozzi di Camazzole (PD) e il nodo XXI, nei pressi di Piazzola sul Brenta, da dove si diparte la condotta DN 1200, denominata Tratta 3-18 diretta verso Padova.

In coincidenza della realizzazione delle opere, previste nel Modello Strutturale degli Acquedotti del Veneto (Mo.S.A.V.), e in particolare nello Schema Veneto Centrale (S.A.Ve.C.), è stata rinvenuta la presenza di materiali di origine antropica che nel proseguo della presente relazione tecnica saranno identificati con la dicitura "materiali di riporto".

I materiali di riporto, frammisti a terreno, rinvenuti nel sottosuolo, derivano da attività di demolizione edilizia; a tal proposito si allega in **Appendice A** la relazione storica del sito¹.

In data 03.03.2014 l'A.T.I. appaltatrice² ha provveduto a comunicare all'Amministrazione comunale³ il rinvenimento di materiali di riporto.

Il lotto di terreno ha una forma triangolare con base sul lato est di circa 30 m, di lunghezza di circa 140 m per un'area complessiva di circa 2000 m². Il sito è censito al N.C.T. come: Sezione Unica – foglio 11° - mappale n. 50.

Nell'Appendice B si allega il verbale della Conferenza dei Servizi del 12.03.2015, che ha approvato il PdCA di cui alle indagini descritte nel prosieguo e nel quale è contenuta anche la cronistoria del procedimento⁴.

1.2. NORMATIVA DI RIFERIMENTO

Relativamente ai controlli ambientali si è fatto riferimento alle disposizioni di cui al D. Lgs. 152/06 "Testo unico ambientale", in vigore a partire dal 29.04.2006. Sotto il profilo normativo è stato altresì considerato il D. Lgs. n. 04 del 16 gennaio 2008 "Ulteriori disposizioni correttive ed integrative del decreto legislativo 03 aprile 2006, n. 152, recante norme in materia ambientale".

Le modalità di campionamento delle matrici suolo, sottosuolo ed acque sotterranee hanno seguito le procedure e le indicazioni di cui alla D.G.R.V. n°2922 del 3 Ottobre 2003, recante le linee guida regionali per i prelievi e le analisi delle matrici ambientali.

⁴ Pagina 2 di 4

¹ Redatta dal Comune di Fontaniva in data 16.02.2015

² Vittadello S.p.A.

³ Nota prot. n. 1158 del 03.03.2014

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

titolo ESITI DELLE INDAGINI AMBIENTAL

2. INQUADRAMENTO GENERALE DEL SITO

L'area in studio si colloca nella porzione occidentale del territorio comunale di Fontaniva come mostrato nell'Allegato 01, entro il quale sono stati inseriti i seguenti estratti cartografici:

Inquadramento alla scala 1:50.000
 Inquadramento alla scala 1:10.000
 Sezione n. 104130 – Carmignano di Brenta

Inquadramento alla scala 1:5.000
 Elemento n. 104131 – Ponte di Fontaniva

Come ben visibile dalle planimetrie allegate e dalla foto aerea di **Figura 1**, il sito si trova inserito in un'area caratterizzata dalla presenza di alcuni insediamenti artigianali e produttivi nel settore immediatamente a nord, da un utilizzo di tipo prevalentemente agricolo del suolo nella zona meridionale. Le due aree sono separate dalla ferrovia⁵. Si segnala la presenza del letto del Fiume Brenta, a est del sito.

Per quanto concerne la topografia dei luoghi, le quote del piano campagna risultano mediamente variabili dai 41 ai 43 m s.l.m. (da CTR 1:5000).

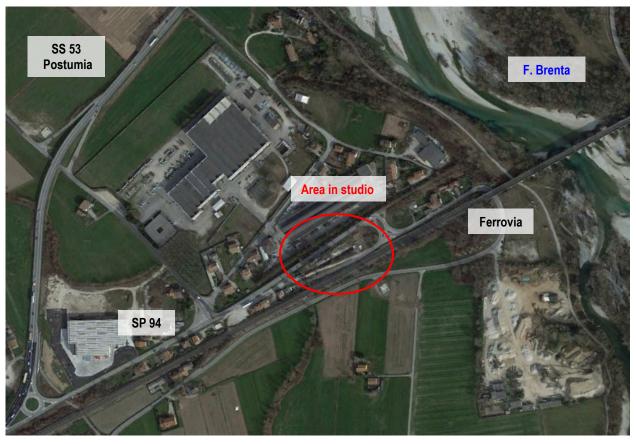


Figura 1 - Foto satellitare dell'area in studio

⁵ Vicenza - Treviso

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

2.1. CONTESTO GEOLOGICO-STRATIGRAFICO

Il sito in esame si colloca entro il settore che si pone nella fascia di transizione tra l'alta e la media pianura veneta a ridosso della fascia dei fontanili. Gli elementi strutturali che rivestono maggiore importanza nella caratterizzazione geologica ed idrogeologica dell'alta pianura sono le conoidi alluvionali ghiaiose. Si tratta di estese strutture a ventaglio depositate dai fiumi in tempi diversi, quando il loro regime era differente da quello attuale e caratterizzato da portate molto più elevate, conseguenti allo scioglimento dei ghiacciai.

Lungo il tratto pedemontano della pianura le successive conoidi di un fiume si sono non solo sovrapposte tra loro ma anche compenetrate lateralmente con quelle degli altri fiumi, cosicché ne risulta un sottosuolo interamente ghiaioso per tutto lo spessore del materasso alluvionale. La larghezza di questa fascia pedemontana a materasso indifferenziato varia da 5 a 20 km a partire dal piede dei rilievi montuosi prealpini. Dalla coltre alluvionale indifferenziata della fascia pedemontana si dipartono verso valle i lembi più avanzati delle conoidi che, attraverso varie digitazioni, originano un materasso non più uniformemente ghiaioso ma costituito da alternanze di orizzonti ghiaiosi e limoso-argillosi di origine marina o dovuti ad episodi di sedimentazione lacustre o palustre.

In definitiva si osserva che, scendendo verso valle dalla zona indifferenziata, in cui si osservano accumuli di materiali sciolti a pezzatura grossolana fino ad alcune centinaia di metri di profondità, lo spessore complessivo delle ghiaie diminuisce progressivamente, fino a che tali livelli giungono ad esaurirsi entro i materiali fini. È questa la conformazione del sottosuolo della media pianura veneta, che si estende lungo una fascia di ampiezza variabile dai 5 ai 10 km a valle della linea dei fontanili.

In particolare l'area interessata dal presente studio si colloca nella zona di transizione tra il materasso ghiaioso, che costituisce il conoide di deposizione del fiume Brenta, e il sistema multifalde della zona di media pianura. In tale zona, gli spessori di materiali a pezzatura grossolana caratterizzano la litologia superficiale per i primi 10-30 m di profondità, mentre nei livelli sottostanti si individuano digitazioni di materiali più fini.

In **Figura 2** si riporta il profilo stratigrafico perpendicolare alla direzione di sviluppo del fiume Brenta. Dall'immagine si evidenzia la differente morfologia dei livelli ghiaiosi tra la sinistra, più spessi, e la destra idrografica del fiume, dove è ubicata l'area di indagine. La linea rossa individua lo sviluppo della sezione in questione mentre il cerchio rosso l'ubicazione del sito.

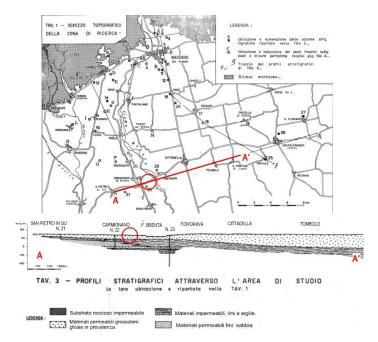


Figura 2 - Profilo stratigrafico e schizzo topografico dell'area di alta-media pianura veneta lungo il corso del Fiume Brenta (Dal Prà A., 1972)

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

2.2. IDROGEOLOGIA REGIONALE

L'assetto geoidrologico della pianura di Fontaniva risulta sufficientemente noto nei propri lineamenti essenziali ed è sostanzialmente riconducibile alle vicende deposizionali che hanno caratterizzato l'evoluzione quaternaria del sistema idrografico locale.

La situazione idrogeologica del sottosuolo è evidentemente condizionata dalle caratteristiche granulometriche e strutturali del materasso alluvionale, e soprattutto dalla differente distribuzione dei materiali ad elevata permeabilità.

Lungo la fascia settentrionale, dove il sottosuolo è interamente ghiaioso, esiste un'unica e potente falda idrica a carattere freatico.

Essa è sostenuta dal substrato roccioso ed oscilla liberamente all'interno dell'acquifero indifferenziato a grande permeabilità, in relazione alle fasi di piena e di magra del proprio regime. Ai piedi dei rilievi la falda si trova tra i 100 e i 50 m di profondità.

Procedendo verso valle la superficie freatica si avvicina progressivamente al piano campagna, fino a venire a giorno nei punti topograficamente più depressi, lungo una fascia praticamente continua, a sviluppo circa est-ovest e di ampiezza compresa tra 2 - 8 km (fascia dei fontanili o delle risorgive).

A partire dalle risorgive, le condizioni idrogeologiche cambiano in conseguenza della differenziazione del materasso alluvionale ghiaioso. Il sottosuolo infatti è qui strutturato in fitte alternanze di livelli ghiaiosi e di letti limoso - argillosi, che determinano l'esistenza di un complesso idrogeologico multifalde ad acquiferi sovrapposti.

Tale sistema multistrato contiene falde idriche in pressione di interesse acquedottistico, alloggiate entro gli orizzonti a granulometria grossolana e confinate al tetto e al letto tra livelli praticamente impermeabili, formati appunto da limi e argille.

In Figura 3 viene riportato un esempio dello schema idrogeologico della Pianura Veneta.

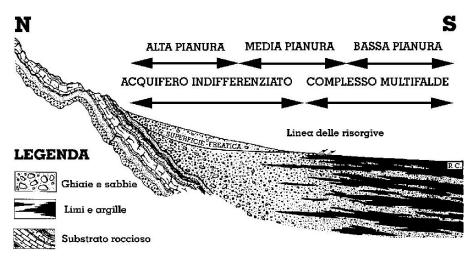


Figura 3 - Schema idrogeologico concettuale della pianura veneta

Gli acquiferi profondi sono strutturalmente in comunicazione con l'acquifero indifferenziato di monte dal quale vengono direttamente alimentati. Di seguito si riportano i principali fattori di alimentazione delle falde che concorrono nella fascia di ricarica degli acquiferi nell'alta pianura veneta:

la dispersione in alveo dei corsi d'acqua nel tratto in cui attraversano l'alta pianura;

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

- l'infiltrazione diretta degli afflussi meteorici;
- l'infiltrazione delle acque irrigue.

Dall'osservazione di **Figura 4** emerge che il sito in studio si colloca pochi km a sud del limite superiore della fascia delle risorgive e la direzione di deflusso delle acque sotterranee è ovest-est.

Il Fiume Brenta, in questo tratto di percorso, drena le acque dell'acquifero freatico sub-superficiale circostante⁶, incidendo notevolmente sulla sua direzione di deflusso.

L'acquifero in studio è alloggiato all'interno del materasso alluvionale ghiaioso descritto al capitolo precedente.

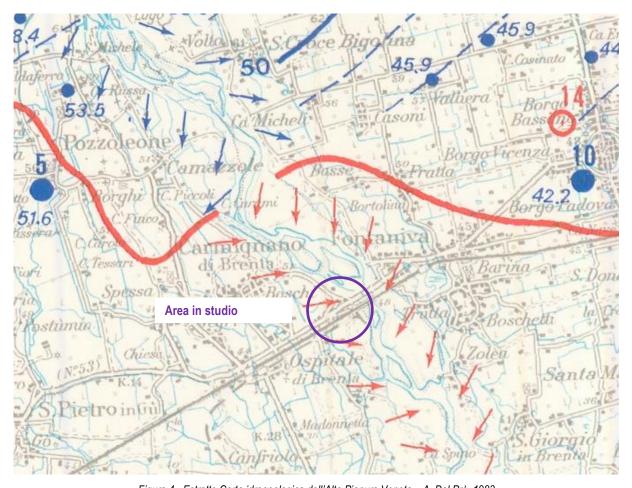


Figura 4 - Estratto Carta idrogeologica dell'Alta Pianura Veneta – A. Dal Prà, 1983

⁶ In figura vettori direzionali di colore rosso

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

ATTIVITÀ DI INDAGINE 3.

Presso il sito sono state condotte indagini geognostiche, utilizzando due diverse metodologie di investigazione, al fine di:

- osservare e campionare i materiali di riporto presenti nell'immediato sottosuolo → saggi esplorativi con escavatore meccanico;
- verificare la successione stratigrafica ed il campo di flusso della falda freatica
- prelevare campioni di acqua sotterranea → sondaggi verticali a carotaggio continuo e completamento dei fori con tubo piezometrico.

3.1. TRINCEE ESPLORATIVE

In data 16 giugno 2015 sono state realizzate n.7 trincee tramite l'utilizzo di un escavatore con braccio meccanico, le cui ubicazioni nell'area sono evidenziate nell'elaborato grafico in Allegato 02.

Le trincee, con identificativo T1...T7, sono state approfondite fino ad una profondità massima di 5 m dal piano campagna, con l'obiettivo di intercettare completamente i materiali di riporto e, ove possibile, il sottostante terreno naturale.

La realizzazione degli scavi ha reso possibile:

- la rilevazione della struttura litostratigrafica del sottosuolo,
- il riconoscimento della tipologia dei materiali di riporto,
- il prelievo di campioni medio compositi di terreno naturale e dei materiali di riporto da conferire al laboratorio chimico e geotecnico.

In Allegato 03 si riportano le schede stratigrafiche di dettaglio elaborate per ciascuno dei saggi esplorativi.

Durante gli scavi non è stata intercettata alcuna circolazione idrica. Al termine delle attività, gli scavi sono stati richiusi per motivi di sicurezza ed è stato ripristinato, per quanto tecnicamente possibile, il precedente stato dei luoghi.

3.2. SONDAGGI E PIEZOMETRI

Nei giorni 9, 10 ed 11 luglio 2015 sono stati terebrati n° 3 sondaggi geognostici mediante l'impiego di una sonda di perforazione tradizionale a rotazione. Le profondità di indagine sono comprese tra i 15 ed i 18 m da p.c.. I sondaggi sono stati eseguiti a carotaggio continuo ed attrezzati con tubo piezometrico in PVC da 4". L'identificativo dei piezometri è: PZ1 – Pz2 – Pz3.

Le carote estratte in fase di perforazione sono state deposte in apposite cassette catalogatrici, permettendo di redigere la stratigrafia di dettaglio in corrispondenza della verticale indagata (cfr. Allegato 04). Nell'Allegato 02 invece si può osservare la posizione delle indagini all'interno dell'area in studio.

Dopo l'introduzione del tubo piezometrico i sondaggi sono stati completati secondo le seguenti metodiche costruttive:

- ✓ nell'anello attorno al tratto filtrante è stato inserito dreno granulare (pre-filtro);
- ✓ l'intercapedine tra il foro e la parte di tubazione cieca è stata sigillata con bentonite granulare;
- ✓ il piezometro è stato dotato di tappo di fondo a vite e di testa ad espansione "no-fill" lucchettabile e completato con la messa in opera di un pozzetto in calcestruzzo dotato di chiusino metallico carrabile;
- è stato eseguito lo spurgo per il corretto sviluppo dell'opera.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	aniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

In **Tabella 1** si elencano le principali caratteristiche costruttive di ogni piezometro.

Tabella 1 – Caratteristiche costruttive dei piezometri

ID sondaggio	Diametro e Materiale	Tratto cieco (m da b.p.)	Tratto fessurato (m da b.p.)
Pz1	4" - PVC	0 – 5	5 – 18
Pz2	4" - PVC	0 – 3	3 – 15
Pz3	4" - PVC	0 – 5	5 – 18

3.3. RILIEVO TOPOGRAFICO

Al termine delle indagini è stato realizzato un rilievo plano-altimetrico del sito per definire la posizione assoluta (x, y) dei punti prova e le quote dei piani di riferimento (bocche pozzo dei piezometri e piano campagna dei singoli punti).

I risultati sono riportati in **Tabella 2**, in cui l'ubicazione delle indagini viene espressa in coordinate metriche Gauss-Boaga (EPSG Projection 3003 - Monte Mario / Italy zone 1, fuso ovest). Le quote assolute del rilievo sono state ricavate con riferimento ad un punto quotato su CTR.

Tabella 2 – Riepilogo dati topografici (georeferenziazione dei punti prova)

ID	x (m)	y (m)	quota p.c. (m s.l.m.)	quota b.p. (m s.l.m.)
T1	1712955	5056397	43.19	-
T2	1712970	5056407	44.50	-
Т3	1712979	5056415	44.32	-
T4	1712991	5056422	45.36	-
T5	1713011	5056434	43.93	-
Т6	1713022	5056439	43.50	-
Т7	1713030	5056447	43.31	-
C1	1713042	5056444	47.20	-
Pz1	1713037	5056431	43.96	43.78
Pz2	1712908	5056401	41.55	41.49
Pz3	1713003	5056408	43.71	43.59

3.4. PROVE IDROGEOLOGICHE DI TIPO LEFRANC

Durante la realizzazione dei n. 3 sondaggi a carotaggio continuo sono state eseguite un totale di n°6 prove di permeabilità in foro a carico variabile di tipo "Lefranc" (n°2 per foro), al fine di stimare in primo approccio il coefficiente di permeabilità idraulica dei materiali che costituiscono l'acquifero nell'area in studio.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

titolo

La prova "Lefranc" si esegue in condizioni sature, in avanzamento e con il foro di sondaggio rivestito mediante la tubazione metallica provvisoria. Il test consiste in un'iniezione di acqua⁷ entro il foro, fino al raggiungimento di una altezza idraulica massima nota; dopo il periodo di saturazione viene interrotto il flusso idrico e si monitorano le modalità di ripristino del livello iniziale.

I dati della curva di abbassamento-tempo, opportunamente interpretati forniscono un valore di permeabilità idraulica puntuale, localmente rappresentativo dell'intervallo testato.

Nel caso in specie la lanterna (sezione di sondaggio non rivestita) per le prove "Lefranc" è stata ricavata sollevando di 50 cm il rivestimento dal fondo foro, ottenendo un settore a geometria cilindrica, la cui l'altezza è circa 3 volte il diametro basale.

Per l'esecuzione delle prove è stata utilizzata la seguente strumentazione di campo:

- sonda automatica con trasduttore di pressione piezoresistivo per la misura in continuo del livello idraulico;
- PC toughbook di campo per l'impostazione e lo scarico dei dati della sonda;
- freatimetro centimetrato per misure manuali di controllo.

Gli intervalli di profondità interessati dai test sono indicati in Tabella 3.

ID SONDAGGIO	ID PROVA	PROFONDITÀ (m da b.p.)
Pz1	PZ1_LF1	10.0 – 10.5
PZI	PZ1_LF1	14.5 – 15.0
D-3	PZ2_LF1	7.0 – 7.5
Pz2	PZ2_LF2	13.0 – 13.5
Pz3	PZ3_LF1	8.5 – 9.0
PZS	PZ3_LF2	14.5 – 15.0

Tabella 3 – Intervalli di profondità delle prove Lefranc

3.5. CAMPIONAMENTO DEI MATERIALI DI RIPORTO E DEL TERRENO NATURALE

Dalle trincee sono stati prelevati campioni medio-compositi sia dei materiali di riporto che dei terreni naturali, alcuni in contraddittorio con l'ARPAV, Dip. di Padova. Presso le trincee T4 e T5 non è stato raggiunto il terreno naturale per i limiti operativi dell'escavatore.

È stato prelevato anche un campione medio composito (denominato C1) dal cumulo di terreno già presente nella zona a nordest del sito.

I campioni dei materiali di riporto sono stati preparati nel modo a seguire:

- 1. raccolta di aliquote incrementali del materiale di risulta dello scavo, depositate provvisoriamente all'interno di sacchetti in PE;
- 2. omogeneizzazione e prima quartatura dell'intera massa;
- prelievo con micro-carotatore dell'aliquota per la ricerca delle sostanze volatili;
- 4. composizione di 2 aliquote equivalenti, da 2 quarti ciascuna;

⁷ prelevata dalla rete acquedottistica

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

- omogeneizzazione e quartatura di un'aliquota per il confezionamento del campione "tal quale" per i test di eluizione;
- o setacciatura con vaglio di maglia 2 cm, omogeneizzazione e quartatura della seconda aliquota per il confezionamento del campione di terreno per analisi chimiche.

I campioni di terreno naturale per analisi chimiche sono stati confezionati previa setacciatura con vaglio di maglia 2 cm, omogeneizzazione e quartatura.

Per il confezionamento delle varie aliquote sono stati utilizzati idonei contenitori:

- vasetti di vetro monouso a bocca larga, chiusi con tappo a vite ed etichettati per l'identificazione: aliquota < 2 cm → analisi chimiche.
- vial con preservante (metanolo) → determinazione delle sostanze volatili,
- sacchetti in PE, aliquota *tal quale* dei materiali di riporto → analisi merceologiche e test di cessione ai sensi del DM 05.02.98 aggiornato dal DM 05.04.06 n.186.

I campioni sono quindi stati conferiti:

- al laboratorio SOVECO Srl di Nove (VI) per le determinazioni analitiche,
- al laboratorio geotecnico Geodata S.a.s. di P. Daminato Padova per le analisi merceologiche,

utilizzando gli accorgimenti necessari per la corretta conservazione e refrigerazione durante il trasporto.

La **Tabella 4,** riportata a seguire, riepiloga gli intervalli di prelievo e la tipologia di analisi effettuate su ciascun campione.

Tabella 4 – Elenco dei campioni di materiale di riporto e di terreno naturale prelevati dalle trincee esplorative

ID Trincea	Profondità trincea (m da p.c.)	Profondità interfaccia riporti / terreno naturale (m da p.c.)	ID campioni prelevati	Tipologia di materiale prelevato	Tipo di analisi	Profondità campionamento (m da p.c.)
			T1/A t.q.	Mat. di riporto tal quale	Test di cessione	0.2 – 4.0
T1	4.3	4.0	T1/A	Mat. di riporto <2cm	Chimica	0.2 – 4.0
			T1/B	Terreno naturale <2cm	Chimica	4.0 – 4.3
			T2/A t.q.	Mat. di riporto tal quale	Test di cessione	0.0 – 5.8
T2	6.0	5.8	T2/A	Mat. di riporto <2cm	Chimica	0.0 – 5.0
			T2/B	Terreno naturale <2cm	Chimica	5.8 – 6.0
			T3/A t.q.	Mat. di riporto tal quale	Test di cessione	0.0 – 4.5
Т3	T3 5.0	4.5	T3/A	Mat. di riporto <2cm	Chimica	0.0 – 4.3
			T3/B	Terreno naturale <2cm	Chimica	4.5 – 5.0
T4	5.5	Non raggiunta	T4/A t.q.	Mat. di riporto tal quale	Test di cessione	0.0 – 5.5
14	3.3	Non raygiunta	T4/A	Mat. di riporto <2cm	Chimica	0.0 - 5.5
T5	3.4	Non raggiunta	T5/A t.q.	Mat. di riporto tal quale	Test di cessione	0.0 - 3.4
13	3.4	Non raygiunta	T5/A	Mat. di riporto <2cm	Chimica	0.0 - 3.4
			T6/A t.q.	Mat. di riporto tal quale	Test di cessione	0.0 – 4.5
T6	5.0	4.5	T6/A	Mat. di riporto <2cm	Chimica	
			T6/B	Terreno naturale <2cm	Chimica	4.5 – 5.0
			T7/A t.q.	Mat. di riporto tal quale	Test di cessione	0.4 – 4.3
T7	4.8	4.3	T7/A	Mat. di riporto <2cm	Chimica	0.4 – 4.3
			T7/B	Terreno naturale <2cm	Chimica	4.3 – 4.8
C1	Cumulo		C1/t.q.	Mat. di riporto tal quale	Test di cessione	_
01	Guillulo	-	C1	Mat. di riporto <2cm	Chimica	-

I campioni T3/A (0.0-4.5 m), T3/A tq (0.0-4.5 m) e T3/B (4.5-5.0 m) sono stati prelevati in contraddittorio con l'ARPAV.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

3.6. CAMPIONAMENTO DELLE ACQUE SOTTERRANEE

Una volta completata la rete piezometrica di monitoraggio, il giorno 16 luglio 2015 sono stati effettuati i prelievi di campioni di acqua sotterranea per le analisi chimiche. Le attività sono avvenute alla presenza di un tecnico dell'ARPAV – Dip. Di Padova, che ha provveduto al prelievo in contraddittorio del campione d'acqua dal piezometro Pz1.

I campionamenti sono avvenuti con l'ausilio di un'elettropompa sommersa del tipo Grundfos MP1, munita di inverter per la modulazione della portata di emungimento a bassi livelli di prelievo, collegata a tubi di mandata monouso in PE.

Durante la fase di spurgo, sono stati monitorati in continuo i principali parametri chimico-fisici di interesse delle acque estratte, mediante sonda di tipo Hydrolab dotata di cella di flusso. I valori dei parametri misurati alla stabilizzazione sono presentati in Tabella 5.

Il prelievo dei campioni d'acqua è avvenuto in regime dinamico a valle delle attività di spurgo, della durata di 20 minuti ca. (per ciascun piezometro) e comunque fino alla stabilizzazione dei parametri chimico-fisici rappresentativi, in ottemperanza alle norme tecniche vigenti.

Tabella 5 - Parametri chimico-fisici misurati alla stabilizzazione durante la fase di spurgo ai piezometri

ID piezometro	Livello piezometrico	Temperatura	рН	Potenziale redox	Conducibilità elettrica	Ossigeno disciolto
prozomotro	(m da b.p.)	°C	-	mV	uS/cm	mg/l
Pz1	8.310	14.54	7.73	265	571	5.55
Pz2	5.610	14.69	7.72	262	563	5.51
Pz3	8.000	14.90	7.79	155	558	4.27

I valori ottenuti dal monitoraggio indicano una certa omogeneità dei caratteri chimico-fisici delle acque sotterranee, in particolare ai piezometri Pz1 e Pz2. Al piezometro Pz3 si osserva una modesta e non significativa riduzione del potenziale di ossidoriduzione e dell'ossigeno disciolto.

Il campionamento è stato completato in regime di low-flow, risciacquando accuratamente la strumentazione al termine di ciascun prelievo con acqua della rete acquedottistica, al fine di prevenire eventuali fenomeni di contaminazione incrociata tra un punto e l'altro.

Per ogni piezometro sono state prelevate varie aliquote di acqua, in quantità sufficiente per le determinazioni analitiche e confezionate in idonei contenitori di vetro e PET. I campioni, etichettati con i dati identificativi del punto di prelievo, sono stati infine conferiti in giornata presso il laboratorio SOVECO S.r.l. di Nove, adottando per la conservazione adequati sistemi di refrigerazione ed opportune cautele per il trasporto.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Font	aniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

4. DISCUSSIONE DEI RISULTATI

4.1. ASSETTO STRATIGRAFICO LOCALE

Sulla base delle evidenze litostratigrafiche emerse nel corso delle indagini, è possibile definire in modo dettagliato il modello geologico alla scala locale.

La successione stratigrafica può essere sintetizzata come a seguire:

- in superficie, presenza di materiali di un materiale di riporto, costituito prevalentemente da ghiaia e sabbia limosa, con inclusi alcuni elementi di origine antropica, per uno spessore variabile da un minimo di 1 m nel settore esterno all'area di interesse (Pz2) fino a ca. 4-5 m da p.c. all'interno del sito,
- ➤ al di sotto dei materiali di riporto e fino a ca. 6-8 m di profondità si rinvengono i terreni naturali, caratterizzati in prevalenza da sabbia con componente ghiaiosa subordinata,
- > da 6-8 m fino alla massima profondità di indagine (18 m) prevale la ghiaia sabbiosa.

4.2. SPESSORI DEI MATERIALI DI RIPORTO

La carta delle isopache dei materiali di riporto riportata in Allegato 05, mostra la distribuzione areale della potenza dell'orizzonte superficiale dei riporti, stimata⁸ attraverso l'interpolazione dei valori puntuali di spessore riconosciuti lungo le verticali di indagine.

L'analisi dell'elaborazione permette di osservare che:

- ➢ gli spessori minimi sono di 3.8-3.9 metri, e si ubicano ai due estremi di NE e SO dell'area in esame, mentre lo spessore massimo, di circa 6 m, è imperniato nel settore centrale, attorno al punto di indagine T2;
- lo spessore medio dei materiali di riporto è pari a ca. 4.70 m.

4.3. CAMPO DI FLUSSO

La disponibilità di n.3 piezometri ha reso possibile la misura della soggiacenza della falda e la definizione del campo dei deflussi sotterranei alla scala del sito. In **Tabella 6** si riportano i valori della profondità della superficie piezometrica (espressi in metri da b.p.) rilevati in due campagne di misura, il 14 ed il 24 luglio 2015, e la relativa quota assoluta rispetto al livello del mare.

16 luglio 2015 24 luglio 2015 ID Soggiacenza Quota falda Quota falda Soggiacenza Piezometro (m da b.p.) (m s.l.m.) (m da b.p.) (m s.l.m.) P₇1 35.47 8.31 8 24 35.54 Pz2 5.61 35.88 35.98 5.51 Pz3 8.00 35.59 7.92 35.67

Tabella 6 – Riepilogo dei valori di soggiacenza di falda

Dall'analisi del campo di flusso riportato negli elaborati in Allegati 06 e 07 si possono formulare le seguenti considerazioni:

⁸ Si tratta di una carta tematica che intende offrire uno spunto di riflessione sugli ordini di grandezza in gioco più che sui reali volumi dei materiali di riporto presenti nel sottosuolo

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
er.t.	ECITI DELLE INDACINI AMBIENTALI		

- titolo ESITI DELLE INDAGINI AMBIENTALI
 - la tavola d'acqua si pone, in valore assoluto, a circa 35-36 m s.l.m., corrispondenti ad una soggiacenza di ca. 5.5-8.5 m dal piano campagna, in relazione all'andamento topografico di quest'ultimo.
 - i deflussi sotterranei avvengono secondo una direttrice OSO ENE;
 - il gradiente idraulico medio, calcolato lungo la direzione di deflusso, è pari allo 0.3% circa;
 - in accordo con le direttrici di scorrimento individuate, è possibile riconoscere:
 - un monte idrogeologico in corrispondenza del piezometro Pz2,
 - un valle idrogeologico rappresentato dal piezometro Pz1.

mentre il piezometro Pz3 si ubica in posizione intermedia.

 la direzione di deflusso delle acque sotterranee è congruente con l'andamento regionalizzato del sistema freatico già descritto al paragrafo §2.2.

4.4. PARAMETRIZZAZIONE DELL'ACQUIFERO

I dati acquisiti dalle prove di permeabilità in foro di tipo Lefranc sono stati opportunamente elaborati per il calcolo della conducibilità idraulica di ogni intervallo stratigrafico interessato dal test. In Allegato 08 si riportano le schede interpretative di dettaglio, mentre in Figura 5 sono presentati in forma grafica i valori di conducibilità idraulica in m/s.

In generale i valori calcolati sono compresi entro due ordini di grandezza, e risultano variabili sia verticalmente entro lo stesso piezometro, sia arealmente.

Il valore medio di conducibilità idraulica è pari a 1.54E-04 m/s. Tale risultato è compatibile con le caratteristiche litologiche dei materiali osservati in fase di perforazione (ghiaie e sabbie con frazioni fini subordinate).

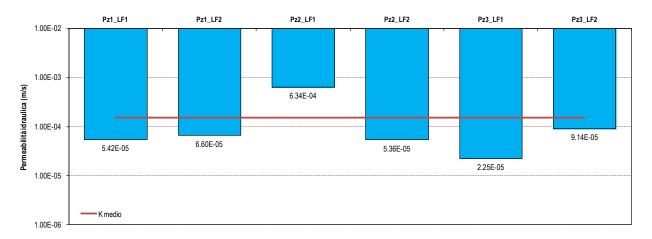


Figura 5 - Valori puntuali di conducibilità idraulica K (espressi in m/s) ricavati da prove Lefranc

4.5. ANALISI CHIMICHE E MERCEOLOGICHE

4.5.1. TERRENI E MATERIALI DI RIPORTO

Il panel analitico adottato per le analisi chimiche sui n.7 campioni di materiali di riporto e sui n.5 campioni di terreno naturale è il seguente:

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	aniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

- Composti inorganici: antimonio arsenico berillio cadmio cromo totale cromo VI mercurio nichel piombo rame selenio tallio vanadio zinco
- Aromatici Policiclici
- Alifatici Clorurati Cancerogeni
- Alifatici Clorurati non Cancerogeni
- Alifatici Alogenati Cancerogeni
- PCF
- Idrocarburi pesanti C>12.

Limitatamente ai campioni di materiali di riporto, T3/A e T6/A, sono stati ricercati anche Diossine e Furani9.

In Allegato 09 e 10 sono riportati in forma tabellare gli esiti rispettivamente per i materiali di riporto e per i terreni naturali.

Per entrambe le matrici i risultati analitici sono stati messi a confronto con le CSC previste dalla normativa vigente (D. Lgs. 152/06, Allegato 5, parte IV, Tabella 1: per il sito in studio si fa riferimento alla colonna B (terreni ad uso commerciale-industriale).

Dall'esame dei prospetti riepilogativi appare evidente la conformità delle concentrazioni rispetto alle CSC, colonna B, in tutti i campioni analizzati, sia di riporto sia di terreno naturale.

4.5.2. TEST DI ELUIZIONE SUI MATERIALI DI RIPORTO

Relativamente ai campioni di materiale di riporto elencati in **Tabella 7**, sono stati eseguiti dei test di cessione ricercando i parametri contenuti nell'Allegato 3 del DM. 186/06 titolato: "Regolamento recante modifiche al decreto ministeriale 5 febbraio 1998 «Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero, ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22»".

Campioni prelevati	Tipologia di materiale prelevato	Profondità (m da p.c.)
T1/A tq	Materiale di riporto	0.2 – 4.0
T2/A tq	Materiale di riporto	0.0 - 5.8
T3/A tq	Materiale di riporto	0.0 – 4.5
T4/A tq	Materiale di riporto	0.0 - 5.5
T5/A tq	Materiale di riporto	0.1 – 3.4
T6/A tq	Materiale di riporto	0.0 – 4.5
T7/A tq	Materiale di riporto	0.4 - 4.3

Tabella 7 – Campioni di materiale di riporto sottoposti a test di cessione ai sensi del DM 186/06

Il confronto dei valori chimici di laboratorio con le concentrazioni limite contenute nel DM 186/06 (cfr. tabella in Allegato 11) evidenzia che tutte le concentrazioni rilevate sia dal laboratorio di parte che dall'ente di controllo risultano essere conformi ai limiti di cui alla tabella contenuta nell'Allegato 3 del DM 186/06.

Materiale di riporto

da cumulo

Da un confronto delle concentrazioni in eluato con le CSC valide per le acque sotterranee (Tab. 2, Allegato V, Titolo 5 alla Parte IV, D. Lgs. 152/06), si rilevano superamenti per Arsenico e Piombo unicamente per il campione T3/A tq, analizzato dal laboratorio ARPAV.

Copia dei Rapporti di prova relativi ai test di cessione sono contenuti:

• nell'Appendice E → laboratorio SOVECO srl,

C1 tq

• in Appendice H → laboratorio ARPAV.

⁹ ARPAV ha eseguito la determinazione di PCDD/PCDF anche sul campione di terreno naturale T3/B

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Fon	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		_

4.5.3. ANALISI MERCEOLOGICA DEI MATERIALI DI RIPORTO

I campioni di materiali di riporto prelevati da ciascuna trincea esplorativa sono stati sottoposti ad analisi merceologica per:

- > la classificazione geotecnica visiva,
- la determinazione della composizione merceologica secondo la metodica UNI EN 13285 "Composizione delle miscele contenti aggregati di riciclo", contenuta nella Circolare Ministeriale 5205/2005.

In Allegato 12 sono presentati in forma tabellare sinottica i risultati di tali analisi, eseguite dal laboratorio geotecnico Geodata, mentre in Appendice G si allegano i relativi rapporti di prova.

Le percentuali indicate negli elaborati sono riferite alla massa del campione. Dall'analisi dei dati si possono evincere le seguenti considerazioni:

- la componente più abbondante è costituita da "materiali litici, pietrisco, calcestruzzo, laterizi, refrattari" con percentuali variabili tra il 57% ed il 91.6%, con una media dell'81.7%;
- il parametro "altri rifiuti minerali" è sempre uguale a zero;
- tutte le altri componenti in media non superano il 9%.

Si precisa che in tutti i casi la percentuale approssimativa del materiale di riporto di origine antropica, rispetto al terreno naturale, è risultata essere inferiore al 20%. In Tabella 8 si propongono, infine, alcuni parametri statistici di sintesi, calcolati sulla base dei risultati del laboratorio.

rabolia o Valori diatiotioi dall	a composizione m	iorooologica aoriip)O14	
NATURA COMPONENTI	% MEDIA	% MAX	% MIN	Dev. Stand.
Materiali litici, pietrisco, calcestruzzo, laterizi, refrattari	81.7	91.6	57.0	12.2
Vetro e scorie vetrose	3.6	10.0	0.0	3.4
Conglomerati bituminosi	1.2	7.6	0.0	2.8
Altri rifiuti minerali	0.0	0.0	0.0	0.0
Materiale deperibile: carta, legno, fibre tessili etc. Materiali plastici cavi: corrugati, tubi etc	4.9	13.5	0.1	5.2
Altri materiali: gesso, metalli, lana di roccia etc	8.7	29.9	0.0	12.1

Tahella 8 – Valori statistici sulla composizione merceologica dei riporti

4.5.4. **ACQUE SOTTERRANEE**

In Allegato 13 è presentata una tabella di sintesi dei risultati delle analisi chimiche eseguite sui campioni di acqua sotterranea prelevate dai n.3 piezometri della rete di monitoraggio. A seguire l'elenco dei composti ricercati:

- Metalli,
- ▶ Inquinanti inorganici,
- ▶ Organici aromatici,
- ▶ Policiclici aromatici,
- ▶ Composti organo-alogenati cancerogeni e non cancerogeni,
- ▶ PCDD e PCDF
- ▶ PCB
- ▶ Idrocarburi Totali (come n-esano)

Copia dei Rapporti di Prova emessi dai laboratori sono contenuti:

- in Appendice F → laboratorio Soveco,
- in **Appendice I** → laboratorio ARPAV.

I valori sperimentali sono riferiti alle CSC, concentrazioni soglia di contaminazione previste per le acque sotterranee dalla vigente normativa in materia ambientale (D. Lgs. 152/06, Allegato 5, Titolo 5 alla Parte IV, Tab. 2). Dagli elaborati si evince la conformità delle concentrazioni in soluzione rispetto alle CSC di legge da parte di tutte le specie chimiche ricercate.

nomefile	V:\903.15.24 - VENETO ACQUE - ESA - Fontaniva (PD)\05_definitive\01_rta\01_esiti indagini\01_DOC\903_Rel_tec_rev00.doc	codice riferimento	903.15.24
committente	Veneto Acque S.p.a.	data emissione	18.12.2015
località	Fontaniva (PD)	revisione	00
progetto	Condotta di adduzione primaria DN 1200 – tratta 34 – Ritrovamento di materiali di origine antropica – Comune di Foni	taniva – Caratterizzazione	ambientale ai sensi
	dell'art. 242 del D. Lgs. 152/2006		
titolo	ESITI DELLE INDAGINI AMBIENTALI		

5. CONSIDERAZIONI FINALI

Le indagini ambientali condotte presso il sito di Via Giare, in Comune di Fontaniva (PD), hanno permesso di verificare la presenza di materiali di riporto (MR) dello spessore medio di 4,70 metri, al di sopra di materiali naturali di tipo ghiaioso sabbioso.

I materiali di riporto, oltre ad una percentuale costituita da ghiaie e sabbie superiore all'80%, contengono prevalentemente materiali inerti di origine antropica (resti di demolizione, mattoni, residui di vetro, etc). Non sono stati rinvenuti materiali contenenti amianto.

Le ghiaie naturali al di sotto dei MR presentano concentrazioni ampiamente inferiori ai limiti di cui alla colonna B, tabella 1 dell'allegato 5 al titolo V della parte IV del D.Lgs. 152/2006. I MR presentano concentrazioni inferiori ai limiti di cui alla colonna B, tabella 1 dell'allegato 5 al titolo V della parte IV del D.Lgs. 152/2006.

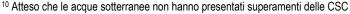
Rispetto al test di cessione un solo referto ARPAV ha verificato 2 superamenti (Arsenico e Piombo) rispetto alla tabella 2 (acque sotterranee) dell'allegato 5 al titolo V della parte IV del D.Lgs. 152/2006.

Le analisi chimiche effettuate sui 3 campioni di acqua sotterranea hanno verificato il rispetto delle CSC di cui alla tabella 2 dell'allegato 5 al titolo V della parte IV del D.Lgs. 152/2006.

Il sito risulta pertanto "non contaminato" ai sensi dell'art. 240, comma 1, lettera f del D.Lgs. 152/2006. Il superamento del test di cessione, ancorché su un solo campione di MR, pone tuttavia un problema formale più che sostanziale¹⁰ relazionato alle prescrizioni di cui all'art. 41 (disposizioni in materia ambientale), comma 3, lettera b della Legge 09.08.2013, n°98: "le matrici materiali di riporto che non siano state conformi ai limiti del test di cessione sono fonti di contaminazione e come tali devono essere rimosse o devono essere rese conformi ai limiti del test di cessione tramite operazioni di trattamento che rimuovano i contaminanti o devono essere sottoposte a messa in sicurezza permanente utilizzando le migliori tecniche disponibili e a costi sostenibili che consentano di utilizzare l'area secondo la destinazione urbanistica senza rischi per la salute".

L'ipotesi di rimozione completa dei MR impone una preliminare analisi dei costi: considerando allora, da una stima preliminare, un volume dei MR compreso fra 10.000 e 12.000 mc oltre a:

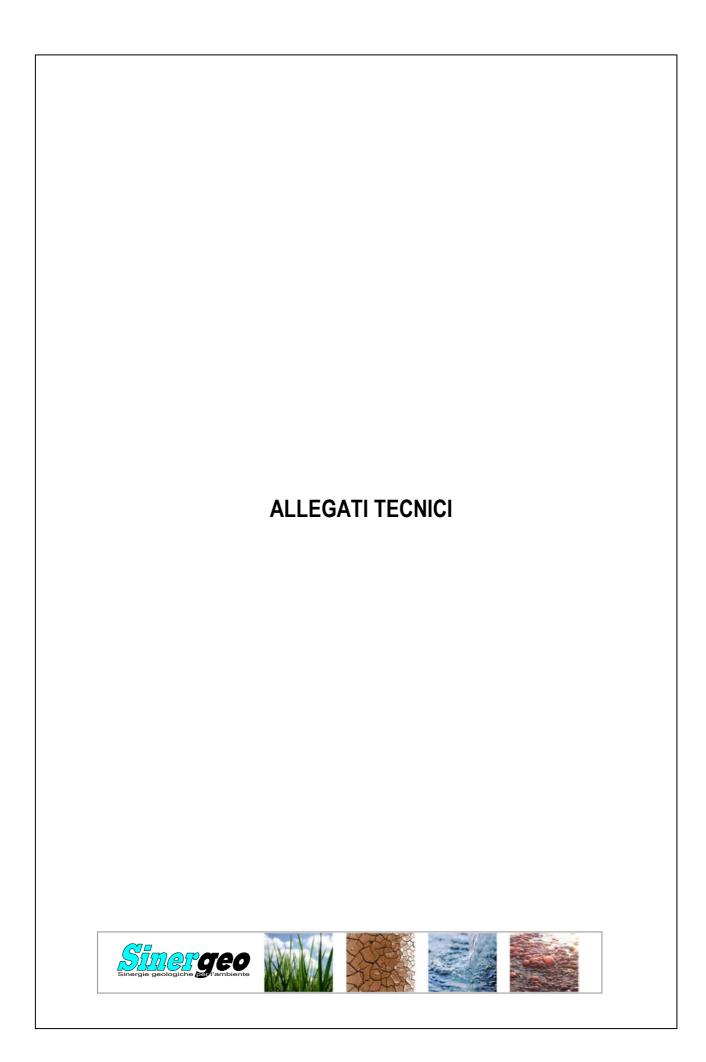
- un costo unitario di trasporto e smaltimento di 20 Euro/ton (riferibile ad un CER probabile 170504, ovvero un rifiuto non pericoloso)
- un peso di volume, in sezione, di 1.75 ton/m³,

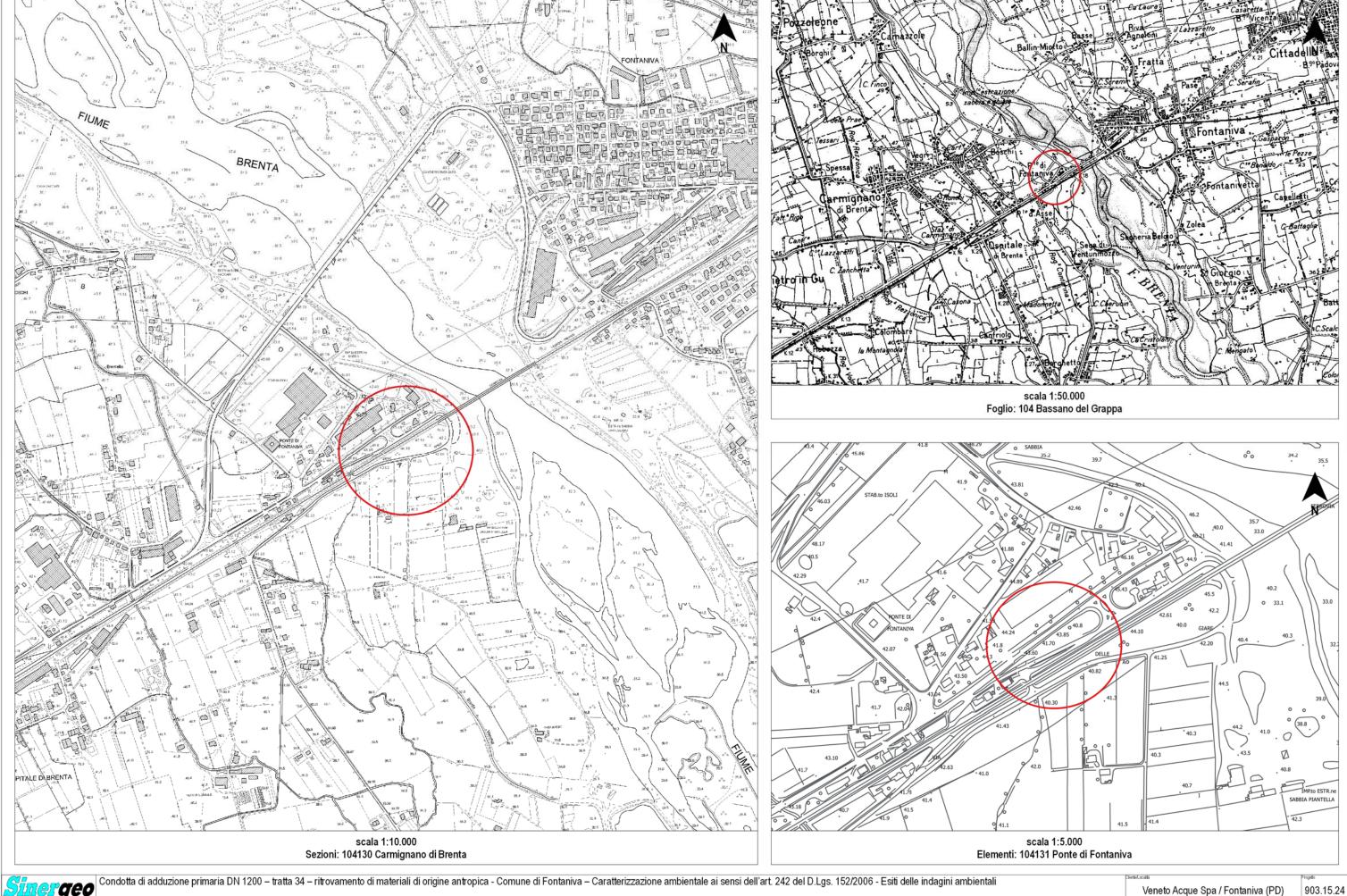

si ricava un costo, per il solo trasporto e smaltimento, compreso fra 350.000 Euro e 420.000 Euro 11. lpotizzando, per uno scavo di sbancamento fino a circa 5 metri di profondità, un costo unitario di 4 Euro/m³ si ricava un costo finale compreso fra 390.000 Euro e 468.000 m³.

Si tratta, evidentemente, di un costo insostenibile a fronte di un problema che appare assumere complicanze più di carattere formale che di effettiva emergenza ambientale. Per tale motivo appare invece plausibile l'ipotesi di messa in sicurezza permanente del sito¹², con misure di monitoraggio della falda, supportata dall'Analisi del Rischio.

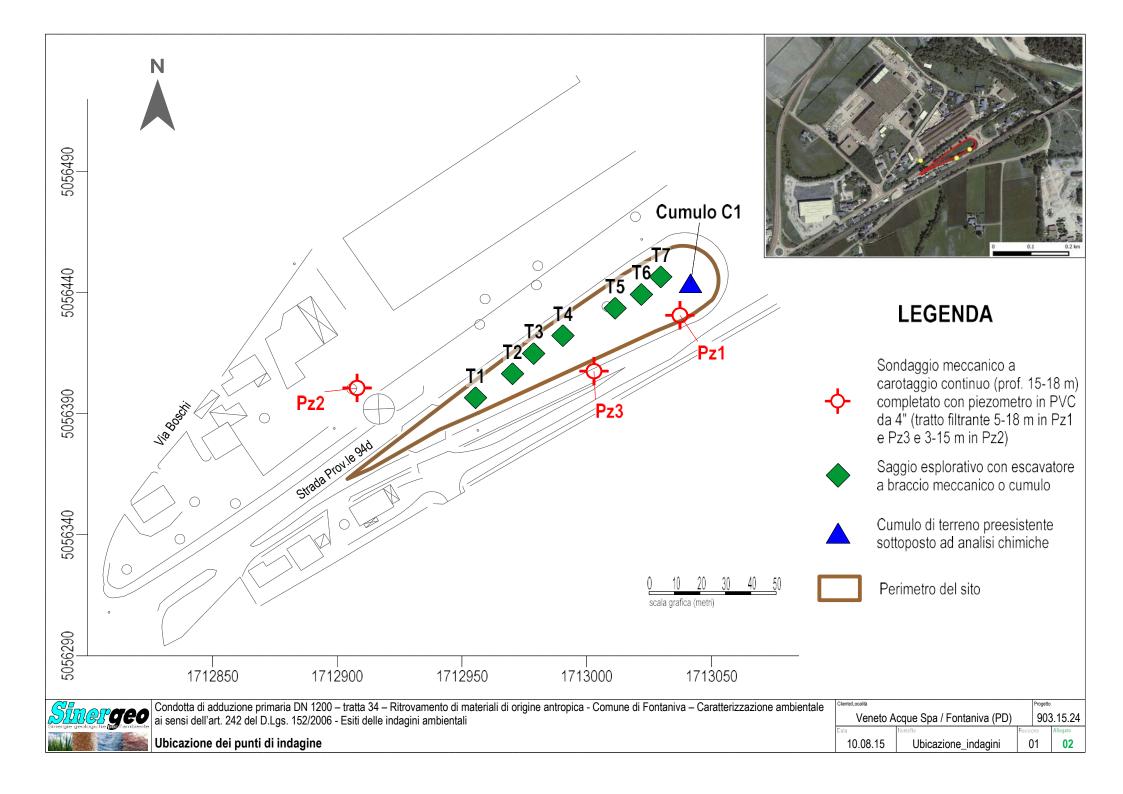
Vicenza 18 dicembre 2015

Dott. Geol. Roberto Pedron


Dr. Geol. Roberto PEDRON



¹¹ IVA esclusa


¹² Ad esempio mediante copertura con terreno non contaminato

Veneto Acque Spa / Fontaniva (PD) 05.10.15 Inquadramento_geografico 00

				Stratigrafia:	T1								
Data d	i realizzazione:		no 2015		Quota p.c.:	43.19 m				ota b		m s.	
Metod			tore meccanico		Coordinate geo			: 505	6397		(EPSG 3003:	Monte I	Mario)
	tro di perforazio				Redazione:	Dott. Geo	l. L. Cappellaro						
Note:		In giallo	i campioni sottop	oosti ad analisi									
	Profondità (m da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.)	Completamento	Profondità (m da p.c.)	nre in sar	Pocket [kg/cmd]	Le Franc	Camp	oioni
0			100000000000000000000000000000000000000	· .		İ			-	:			
	0.20	42.99		Terreno vegetale									_
0.5													0.2 m
1	-												
1.5													
2	_			Materiale di riporto costituito da sa ciottoli con inclusi elementi di origi	bbia ghiaiosa con ne antropica							T1/A - T1/A t.q.	
2.5	-											T1/	
3	- - - -												
3.5													
4	4.00	39.19	7552000										40
'	7.00	00.10	0 0 0 0 0			1							4.0 m 4.0 m
	4 20	20.00		Sabbia ghiaiosa con ciottoli					1			T1/B	
	4.30	38.89	n. g			1							4.3 m
4.5]												
	-												
	-								į				
_													
5	_												
5.5	- -												
6													
Si		Condotta	a di adduzione pri	maria DN 1200 – tratta 34 – ritrovan e di Fontaniva – Caratterizzazione a	nento di materiali d ambientale ai sens	li Clie	nte/Località Veneto Acque S	A.g.	/ For	ntaniv	ra (PD)	Progetto 903 1	5 24

origine antropica - Comune di Fontaniva – Caratterizzazione ambi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali Schede stratigrafiche - Trincee esplorative

Veneto Acqu		903	3.15.24	
Data	Nomefile	Revisi	one	Allegato
21 07 15	trincae sda	(nn	03

Data di realizzazione	: 16 giugr	no 2015		Quota p.c.:	44.50 m	n s.l.m.		Quo	ota b.	.p.:	m s	s.l.m.
Metodo:		ore meccanico		Coordinate geo			: 5056	6407		(EPSG 3003	3: Monte	Mar
Diametro di perforazi Note:		i campioni sottop	nosti ad analisi	Redazione:	Dott. Geo	ol. L. Cappellaro						
Profondità	Quota	Tournplorii sottop	Log stratigrafico		Falda	Completamento	Misu	re in s	ito	Le Franc	Cam	pion
(m da p.c.)	(m s.l.m.)		Log stratigranco		(m da P.R.)		Profondità m da p.c.)	/ane Test [kg/cmq]	Pocket [kg/cmq]			
0	38.70		Materiale di riporto costituito da sa ciottoli con inclusi elementi di origi	bbia ghiaiosa con ne antropica							T2/B T2/A tq.	5.8 5.8

dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini amt

21.07.15 trincee.sdg 00 03

Materials Constitute Cons	Det "		40 :	2045	Stratigrafia:	T3	44.00			•	h.v.			l w
Description performations: Post continued by the plant is campion sorthogost and americal Contracted dates on APPAV per turbli components of the part is campion. Post-operation Post-oper						Quota p.c.: Coordinate ged			Y: 505					
Production (ref. et al.m.) Out of the p.a.) (ref. et al.m.) Materials of ripoto costituito da sabbia debormente gibilitare con cistodi con inclusi elementi di origine antropoca Materials di ripoto costituito da sabbia debormente gibilitare con cistodi con inclusi elementi di origine antropoca 3.5 4.5 4.5 4.50 39.82 Condicita di adduzione primate DN 1200 - testis 34 - ritocomento di materiali di controle di addicale con cistodi con cistodi con microsi di controle di control			one:			Redazione:	Dott. Ged				,_, 500			
Meterial of tracts continue described of doctorers of tracts of tr	Note:		In giallo	i campioni sottop	osti ad analisi / Contraddittorio ARP.	AV per tutti i cam			T -					
Materials of inports contribute de sambia deboirmente Section					Log stratigrafico		Falda (m da P.R.)	Completamento	- 1			ıc	Camp	ıoni
Meternie di riporto costituito de sabbia deborimente gibblicas con cottosi con inclusi elementi di origina antroppa. Meternie di riporto costituito de sabbia deborimente gibblicas con cottosi con inclusi elementi di origina antroppa. 3.5 4.5 4.5 4.5 5.5 Condolle di adduzzione primeria DN 1200 - Izalta 34 - ritrovamento di materiale di di controlle	(11	i ua p.c.,	(111 5.1.111.)						Profon (m da p	Vane T [kg/cn Pocke	[kg/cm			
Materiale di riporto costituiro da sabbila debolmente gipliaiosa con ciottoli con inclusi elementi di origine antropica 2.5 3.5 4.5 4.50 39.82 Sabbia ghiaiosa con ciottoli Sabbia	0													0.0 m
Sabbia ghiaiosa con ciottoli 5.5	1 _ 1.5 _ 2 _ 3 _ 3.5				ghiaiosa con ciottoli con inclusi elei	obia debolmente menti di origine							T3/A - T3/A t.q.	
5.5	4.5	4.50	39.82											4.5 m 4.5 n
5.5]		0 0 0 0 0	Sabbia ghiaiosa con ciottoli								T3/B	
5.5	5	5.00	39.32	0.00 0 0										5.0 m
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali		- 5.55	30.02	8.00			1							J.V 11
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali		+												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali		1												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali	5.5	-												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali		1												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali]												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali	6	-												
Sinergie geologiche Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali Veneto Acque S.p.A. / Fontaniva (PD) 903.15.		1	Condotto	di adduziono pri	maria DN 1200 – tratta 24 - ritrovom	ento di matoriali d	di le	ente/Località		<u> </u>		Pro	getto	
dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali Data Nomelle Revisione Allegato	Sin	er ge	origine au	ntropica - Comun	e di Fontaniva – Caratterizzazione a	mbientale ai sens	si '	Veneto Acque	S.p.A.	/ Fontar	niva (PD)			5.24
	Sinergie ge	ologiche pull'ambi	dell'art. 2	42 del D.Lgs. 152 e strationafici	2/2006 - Esiti delle indagini ambienta	ali		21.07.15	nefile	rinces s	da	Revisione 00		gato 03

Material of inputs Encautes meccanics Contractants Contrac	Data di realizzazione:	16 aiua	no 2015	Stratigrafia:	Quota p.c.:	45.36 m	ı s.l.m.		Qu	ota b	.p.:	m s	.l.m.
Note: Protection of Part of the State of th					Coordinate ged			: 505					
Protection Pro			the annula of a sitter										
Meterials di riporto costituto de sabbia ghialosa con costituto			Т саттріоні ѕоцор	,	шпш орегаци че			Misı	ure in	sito	Le Franc	Cami	pioni
0.5 1 1 1.5 2 2 2 2 2 2 2 2 2		(m s.l.m.)		Log stratigratico		(m da P.R.)	·						,
1		<u> </u>		I				P.E		- P			00 m
1.5 _ 2 _ 2.5 _ 3.5 _ 39.86	0 -		72200										0.0 111
1.5 _ 2 _ 2.5 _ 3.5 _ 39.86			00000										
1.5 _ 2 _ 2.5 _ 3.5 _ 39.86	0.5		140.000										
1.5													
1.5			707500										
1.5	_		0.00000										
2.5	1 _		0.000										
2.5	_												
2.5	_												
2.5	1.5		0.02										
2.5	1.5		20.55.0										
2.5													
2.5	-												
A	2 _		605										
A	-												
A			12.20.00 10.00.00										
A	25												
3.5 _ 4 _ 4.5 _ 5.50	2.5		1000 OC									6	
3.5 _ 4 _ 4.5 _ 5.50]			Materiale di riporto costituito da sa	bbia ghiaiosa con					}		4/A t.	
3.5 _ 4 _ 4.5 _ 5.50	-		12/20/20	ciottoli con inclusi elementi di origir	ne antropica							'A - T	
4.5	3 _											T4/	
4.5	-		755000										
4.5			2000										
4.5	35		740.000										
4.5 _	3.5												
4.5 _]		722200										
4.5 _	-		0.000							1			
5	4 _		10.000										
5	-												
5			72000										
5	45		0.000										
5.5 5.50 39.86 5.5m													
5.5 5.50 39.86 5.5m	-												
5.5 5.50 39.86 5.5m			722200										
6	5		0.4000										
6	-												
6													
6	5.5	39 86	D. G. G. C.						-				55 m
		35.30	1.0.VV. X.X.			1							Lo.0 ///
	-												
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali						<u> </u>			į	į			

Veneto Acque S.p.A. / Fontaniva (PD)									
Data	Nomefile	Revisi	one	All					
21.07.15	trincee.sdg	(00						

03

Schede stratigrafiche - Trincee esplorative

				Stratigrafia:	T5								
Data di r	ealizzazione:	16 aiuai	no 2015		Quota p.c.:	43.92 m	ı s.l.m.		Qu	ota b	.n.:	m s	l m
Metodo:			tore meccanico		Coordinate geo			: 505			(EPSG 3003:		
Diametro	di perforazio				Redazione:	Dott. Geo	I. L. Cappellaro						
Note:		In giallo	i campioni sottop	osti ad analisi / Approfondimento int	errotto per presen								
	ofondità da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.)	Completamento	rofondità m da p.c.)	ace in sur	otio Pocket [kg/cmd]	Le Franc	Camp	pioni
	0.40	10.00		T				£.E	- S-2	<u>د چ</u>			
0.5	0.10	43.82		Terreno vegetale									0.1 m
1 - -	-												
1.5 _ - -				Materiale di riporto costituito da sal ciottoli con inclusi elementi di origir	obia ghiaiosa con ne antropica							T5/A - T5/A t.q.	
2												T5//	
2.5													
3 _	0.40	40.50											
3.5	3.40	40.52											3.4 m
4 _	-												
4.5													
5 <u>-</u> - -													
5.5													
6	<u></u>	<u></u>							1	-			
		Condotta	di adduzione pri	maria DN 1200 – tratta 34 – ritrovam	ento di materiali d	Clie	nte/Località	n A	/ E^-	ıtani:	(2 (DD)	Progetto	E 04

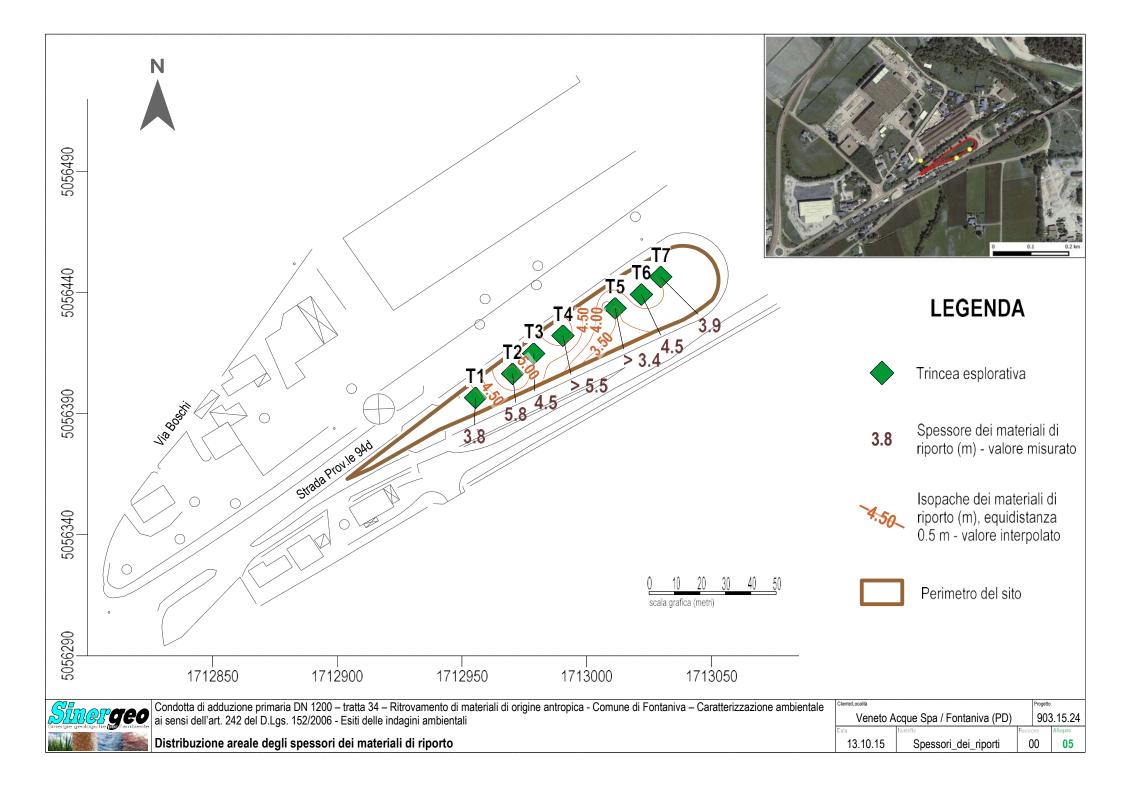
	C
	or
Sinergie geologiche Tambiente	de
	S

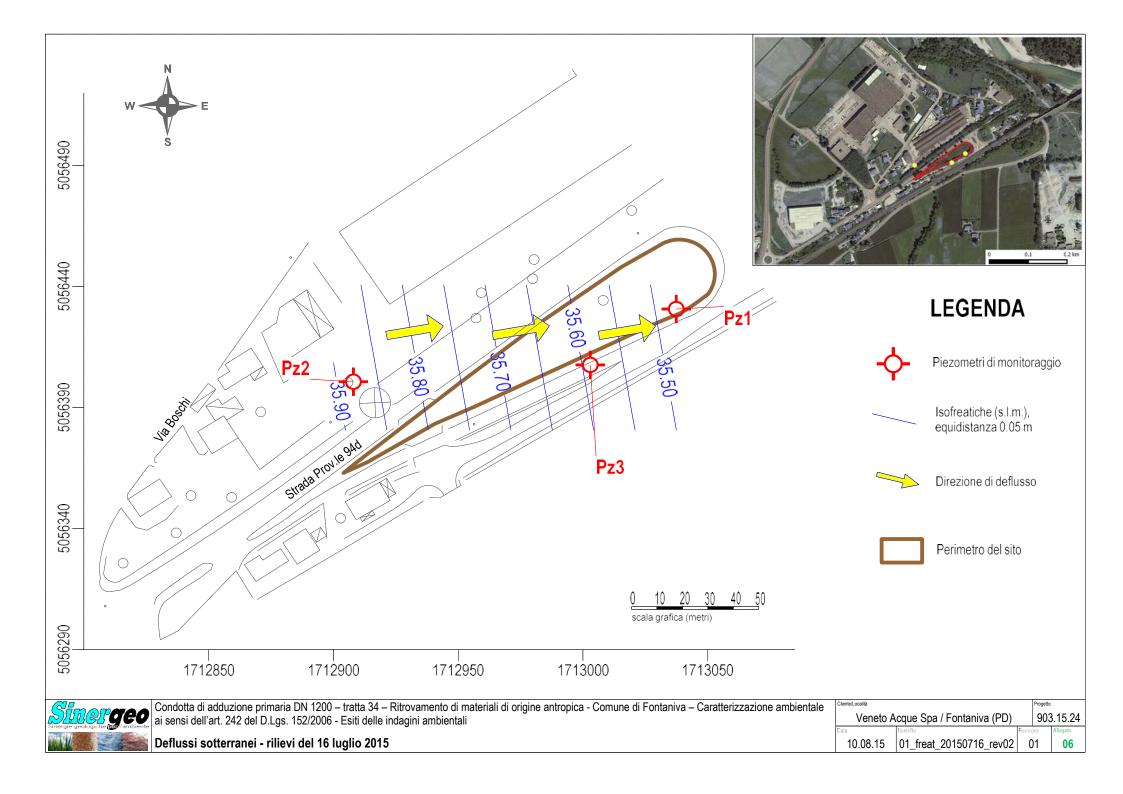
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali Schede stratigrafiche - Trincee esplorative

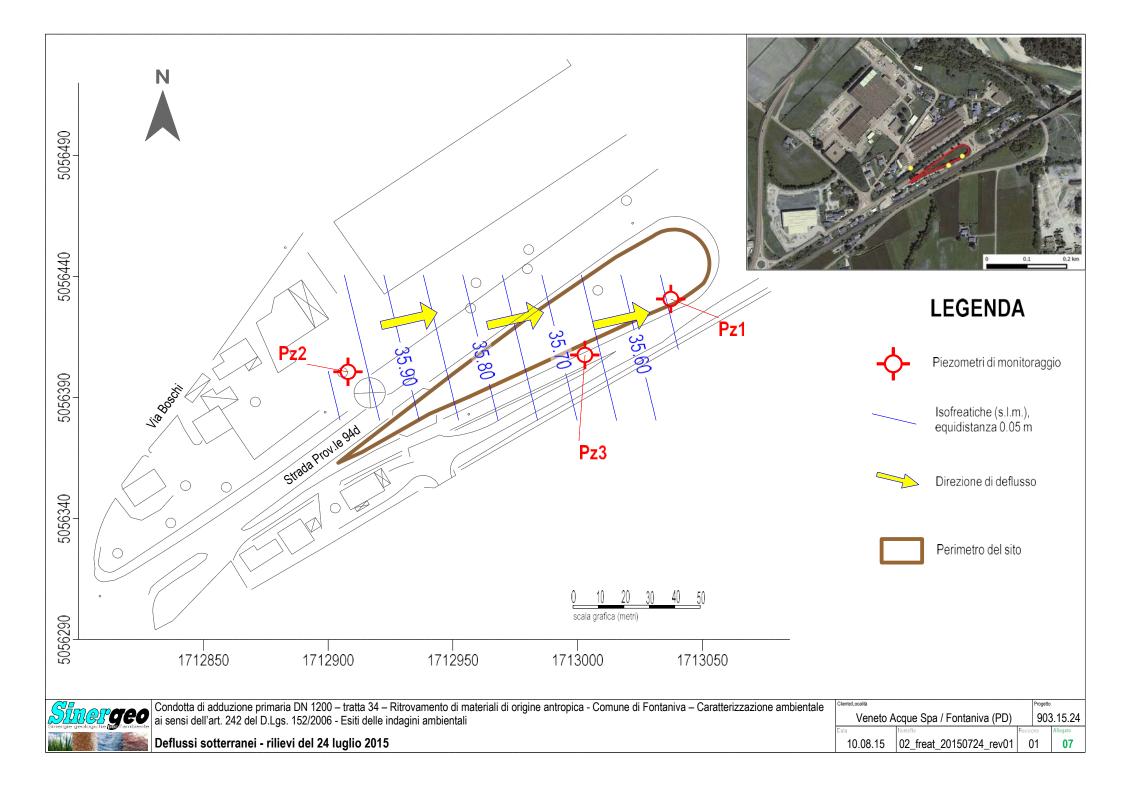
Veneto Acqu	ue S.p.A. / Fontaniva (PD)		903	3.15.24
Data	Nomefile	Revisi	one	Allegato
21 07 15	trincae sda	ا ا	nn	กร

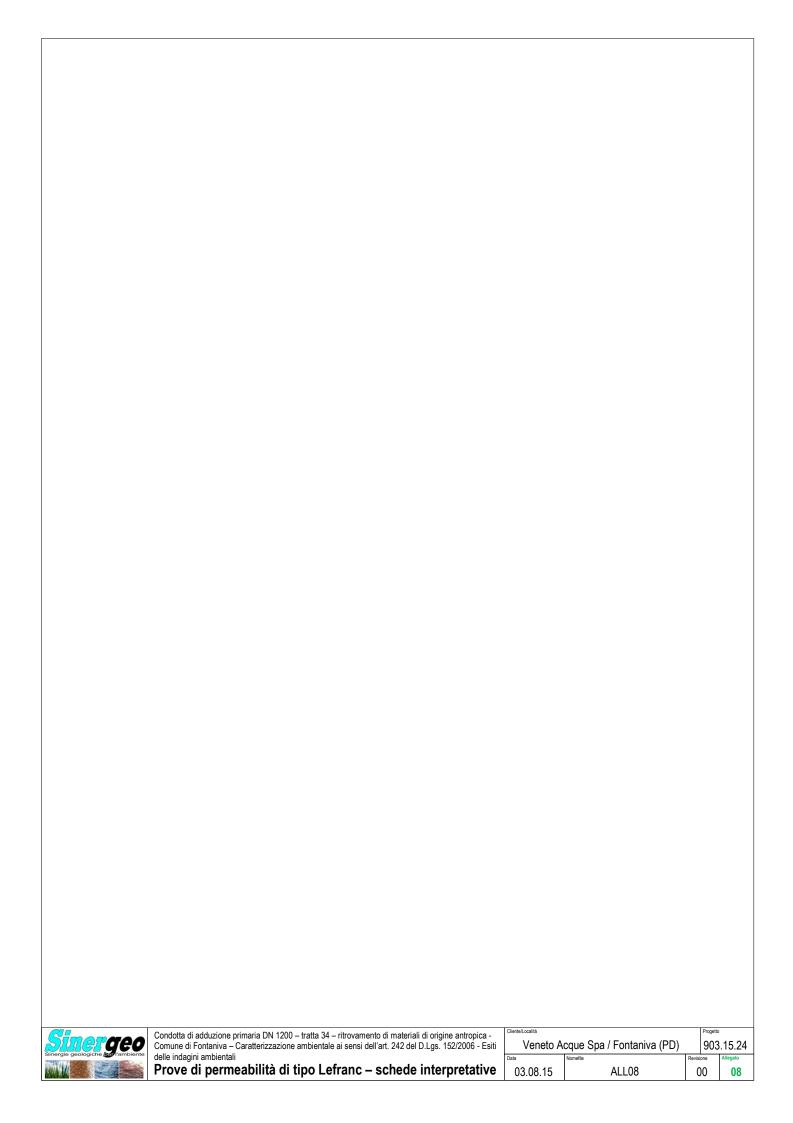
				Stratigrafia:	T6	_			_	_		
	ealizzazione:		no 2015		Quota p.c.:	43.50 n		V. F0F	Quota k			m s.l.m.
Metodo: Diametr	o di perforazi		tore meccanico		Coordinate geo Redazione:		ol. L. Cappellaro	Y: 505	06439	(EPSG 30	U3: IVIO	nte Mario
Note:			i campioni sottop	oosti ad analisi	1							
	ofondità ı da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.)	Completament		ure in sito ਫ਼ੌਵਾਂ ਹੁਰ	Le Franc	: (Campioni
(II	1 da p.c.)	(111 3.1.111.)						Profondità (m da p.c.)	Vane Test [kg/cmq] Pocket [kg/cmq]			
0.5 _				Materiale di riporto costituito da sa ciottoli con inclusi elementi di origir	bbia ghiaiosa con ne antropica							0.0 m
1.5 _	1.60	41.90	10000000000000000000000000000000000000			_						
2.5 _				Materiale di riporto costituito da sa ciottoli in abbondante matrice limo inclusi elementi di origine antropica	so-argillosa con							16/A-16/Atq.
3.5 _	3.20	40.30		Materiale di riporto costituito da lim	no di colore grigio							
4.5	4.50	39.00	00000									4.5 m 4.5 m
5 _	5.00	38.50		Sabbia ghiaiosa con ciottoli								8/9 5.0 m
5.5 _												
		Condotta	a di adduzione prii	⊥ maria DN 1200 – tratta 34 – ritrovam	nento di materiali d	di Clie	ente/Località				Proge	
Sinergie ge	Ologiche partambi	origine a	ntropica - Comun	e di Fontaniva – Caratterizzazione a 2/2006 - Esiti delle indagini ambient	imbientale ai sensi ali	i Da	Veneto Acque	S.p.A.	. / Fontani	va (PD)	90 Revisione	3.15.24
	34.	Sched	e stratigrafich	ne - Trincee esplorative			21.07.15		trincee.sd	g	00	03

			Stratigrafia:	T7								
Data di realizzaz		no 2015		Quota p.c.:	43.31 m				ota b			.l.m.
Metodo: Diametro di perfe		tore meccanico		Coordinate geo Redazione:	_	k: 1713030 Y I. L. Cappellaro	: 505	6447		(EPSG 3003:	Monte	Mario)
Note:		i campioni sottop	oosti ad analisi	iteuazione.	Dott. Geo	i. L. Cappellalo						
Profondità (m da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.)	Completamento	rofondità m da p.c.)	ure in		Le Franc	Cam	pioni
0 _												
0.4	0 42.91		Terreno vegetale									0.4 m
1 _ - - -												
1.5												
2			Materiale di riporto: sabbia ghiaios Presenza di mattoni, asfalto, ferro, calcestruzzo, polistirolo, vetro, pla: metalliche, mattonelle, pali in ferro	nylon, stica, tegole, reti							4 tq.	
2.5			decimetrici e metrici di calcestruzz Al bottom livello di mattoni con cal travi metriche in calcestruzzo arma blocchi decimetrici di calcestruzzo	o armato (<20%). cestruzzo, ferro,							T7/A - T7/A tq.	
3 _												
3.5												
4 _												
4.3	0 39.01	2027										4.3 m 4.3 m
4.5			Sabbia ghiaiosa con ciottoli								17/B	4.5 111
4.8	0 38.51	0.0.0.0										4.8 m
5 _												
_												
-												
5.5												
6						<u> </u>		<u> </u>	-		<u></u>	
Simere	Condotta Origine a	a di adduzione pri ntropica - Comun	maria DN 1200 – tratta 34 – ritrovan e di Fontaniva – Caratterizzazione a 2/2006 - Esiti delle indagini ambient	nento di materiali d Imbientale ai sens	i Clie	nte/Località /eneto Acque S	.p.A.	/ Foi	ntaniv	a (PD)	Progetto 903.1	5.24
Sinergie geologiche	remblente dell'art	242 del D Las 15	2/2006 - Esiti delle indagini ambient	ali	Data					Revis		egato


dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini amb Schede stratigrafiche - Trincee esplorative


Veneto Acqu	ue S.p.A. / Fontaniva (PD)		903	3.15.24
Data	Nomefile	Revisi	one	Allegato
21 07 15	tringgo edg	١،	nn	0.3


oula UI II	ealizzazione:	10-11 lu	ıglio 2015		Quota p.c.:	43.96 m	n s.l.m.		Quo	ta b.	p.: 43.7	8 m s.l.m.
Metodo:			mento a carotaggi	o continuo	Coordinate geo			: 5056			(EPSG 3003:	
Diametro	di perforazio	ne: 178 mm	ı - 101 mm		Redazione:	Dott. F. N	1attiello				-	
Note:						1					1	
Profondità (m da p.c.)		Quota		Log stratigrafico		Falda (m da P.R.)	Completamento		re in si		Campioni	Le Franc
(m	da p.c.)	(m s.l.m.)				,		Profondità (m da p.c.)	Vane Test [kg/cmq]	Pocket [kg/cmq]		
0 -	0.20	43.76	**************************************	Terreno vegetale			0					
_			72000									
1 _			0.0000	Materiale di riporto costituito da gl	niaia, ciottoli e							
-				sabbia con presenza di laterizi e d nocciola-grigio	li colore							
_			0.0000	noodola grigio			je je					
2 _	2.00	41.96		Materiale di riporto costituito da gh	niaia e ciottoli in	-	Tratto cieco					
_	2.50	41.46	752200	matrice limosa-sabbiosa di colore	marrone-rossastra		Tratto cieco					
3 -						1	aft of					
_			8.607.81	Materiale di riporto costituito da gi matrice sabbiosa debolmente limo	niaia e ciottoli in		i ii					
-	3.70	40.26	00000	matrice sapplosa depormente inno	osa di colore grigio							
4 -	0.70	10.20	0 0 0 0	Cabbia ann abiain a siattali di sala	ro ariaio obiero	1						
_	4.30	39.66	0 0 0 0 0	Sabbia con ghiaia e ciottoli di colo	rie grigio critaro							
-			0.00.00	Ghiaia e ciottoli in matrice sabbios	sa di colore grigio.							
5 _	5.00	38.96	000			1	4					
-			O O O O O									
6 -			b 0 0 0 0	Sabbia con ghiaia e ciottoli di colo	re grigio chiaro							
6 _				ginala o donon ai oolo	gg cac							
_	6.50	37.46	0.0.0 0.0									
7 -			0 0	Ciottoli e ghiaia con poca sabbia c	ti coloro possiola							
· -	7.30	36.66	0 0	Ciollon e ginala con poca sabbia c	il colore flocciola							
-	7.50	36.46	*0	Sabbia di colore nocciola]						
8 _				Ghiaia in matrice sabbiosa deboln	nente limosa di							
-	0.55	35.41	0 0 0	colore nocciola								
_	8.55 8.85	35.41		Sabbia di colore nocciola								
9 _	0.00	00.11	0 0 0 0			15)						
-			7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ghiaia in matrice sabbiosa deboln	nente limosa di	/20/						
10	10.00	33.96	0 0 0	colore grigio-nocciola		Hs: 8.31m (rilevato in data 16/07/15)						
10 <u> </u>	10.00	33.30				. dat						10.0
-						ato ii						10.5
11 -			· 0 · 0 · 0 · 0			rileva	· - 9 ·					
_						1 (m)	Tratto filtrante					
_			 			8.3						
12 _						H ₂						
_				Ghiaia in matrice sabbiosa-limosa colore grigio-nocciola	con ciottoli di							
13			0 0 0	colore grigio mecalcia								
13 _												
-			1 * 0 • 0 • 0									
14 -												
_												
_	14.55	29.41	<u> </u>									14.5
15 _	15.00	28.96		Sabbia debolmente limosa di colo	re grigio-nocciola							기 14.5 15.0
_			0.00.00				000					
16			0 000									
16 _			0.000	Ghiaia in matrice sabbiosa con cio	ottoli di colore							
=			0.000	grigio								
17			00.00.00									
'' -	17.40	26 56	0.000									
-	17.40	26.56	4 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		P 1							
18	18.00	25.96		Ghiaia in matrice limosa-sabbiosa	dı colore grigio							
~~~		Condotta	di adduzione prin	naria DN 1200 – tratta 34 – ritrovan	nento di materiali d	i Clie	ente/Località					Progetto
											'	
SIIII	GEGENERAL PROPERTY OF THE PROP	origine ar	ntropica - Comune	e di Fontaniva – Caratterizzazione a /2006 - Esiti delle indagini ambient	ambientale ai sensi		Veneto Acque S	.p.A.	/ Font	aniv	a (PD)	903.15.24


	realizzazione:				Quota p.c.:	41.55 r				ota b.p.:	41.49 m s.l.
Metodo: Diametro	o di perforazi		mento a carotagg	io continuo	Coordinate geo Redazione:	grafiche: Dott. F. N		Y: 50	56401	(EPSG 3	003: Monte M
Note:	o ai periorazi	Onc. 170 mm	1 101111111		rtcuuzione.	DOM: 1.1	nationo				
	ofondità n da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.	Completament	o Mis	sure in s		oni Le Fra
			P#/\€ ¦S:x; \.	10.1.11.11				Profe (m da	Vane Test [kg/cmq]	Pocket [kg/cmg]	
0 -	0.03	41.52 41.10		Soletta in conglomerato bituminoso Materiale di riporto costituito da sal	obia con ghiaia di					1	
1 _	1.20	40.35	7000000	∖colore nocciola Materiale di riporto costitutito da cio di colore grigio	ottoli con sabbia		Tratto cieco				
2	1.90	39.65		Sabbia fine limosa di colore noccio	la		atto			 	
	2.50	39.05	0.0.0.0.0.0	Sabbia e ghiaia di colore nocciola			ı	3		1 1 1 1	
3	3.00	38.55	000.00	Sabbia e ghiaia con ciottoli di color	e grigio	1				1 1 1	
J _			0.0.0.0.0.0.	Sabbia e ghiaia di colore nocciola		1	)% <b></b>	000		i !	
	3.40	38.15	9 9 9 9 9	Cassia o ginala ai coloro nocciola		1		000		1	
4 _	4.40	37.15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sabbia con ghiaia e ciottoli di color	e grigio chiaro			0000			
5	5.00	36.55	00000	Ghiaia con sabbia e ciottoli di color	e nocciola		000	0000		1 1 1 1	
-	5.50	36.05	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sabbia con ghiaia e ciottoli di color	e grigio chiaro		00 00 00	0000		1	
6								00000			
			0000			Hs: 5.61m (rilevato in data 16/07/15)				1 1 1 1	
7 _			0.0000			ata 16/		0000		1 1 1 1	7
	1		9,0'0 O O			in da				1 1 1	
8 _			0.000.0			vato	000	000		i i i	
			0.00000			_ (rije	° •	000		1	
•	-		d: (** : d: 0 : 0 :			.61m	illtrante			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9 _	-		(a. c. g. c	Ghiaia in matrice sabbiosa con cio	ttoli di colore	ls: 5.				; i i i	
	]		7 0 0 0	grigio- nocciola			atto	0000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10			00 0 0							1	
-			0:0:00:0				000			1	
			0.000				00	000		1 1 1	
11 _			0.00.0				000	000		i 1 1	
	1						000	000		1	
12			0.0.0							1 1 1	
12 _	_		00000				0000	000		i 1 1	
			0 0000					0		1 1 1	
13	12.90	28.65	0 0 0							1 1 1	
-	12.50	20.05	0.00	Ghiaia con ciottoli in matrice sabbio colore grigio-nocciola	osa-limosa di					1	2
	13.50	28.05	700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ooloro grigio-riocciola			000	0000		1	
14	1		0.0000	Ghiaia con ciottoli in matrice sabbi	aca di calara		000	000		1	
	1		000000	grigio-nocciola	osa ui culule		00		-	1	
15	15.00	26.55	0.000.0					0000			
										1 1 1 1	
16	1								-	1	
-											
17	1									1	
'' -	_									1	
-										: 	
18			41-42-1	DN4000 + # 24 **			and a section		<u> </u>	1	
Sin	erge	origine a	ntropica - Comun	maria DN 1200 – tratta 34 – ritrovam e di Fontaniva – Caratterizzazione a	mbientale ai sensi	i	_{ente/Località} Veneto Acque	S.p.A	. / Fon	taniva (PD)	903.15
einergle ge	ologicne 📆 7l'ambi			2/2006 - Esiti delle indagini ambienta ne - Sondaggi	ılı	Da	21.07.15	nefile	sondag	ıgi.sda	Revisione Allega
	JAN STEEL	- Jonean		maa.						J ~ A A	""

	realizzazione:	10 luglio			Quota p.c.:	43.71 r		Quota b		9 m s.l.m.
Metodo			mento a carotaggi	o continuo	Coordinate ged			′: 5056408	(EPSG 3003:	Monte Mari
Diametr Note:	o di perforazio	<b>ne</b> : 178 mm	ı - 101 mm		Redazione:	Dott. F. N	//attiello			
P	rofondità n da p.c.)	Quota (m s.l.m.)		Log stratigrafico		Falda (m da P.R.	Completamento	Profondita (m da p.c.) (m da p.c.) Wane Test [kg/cmq]	Campioni	Le Franc
0								Prod (m d (m d (m d		
1 _	2.10	41.61		Materiale di riporto costituito da ghi ciottoli di colore nocciola	aia sabbiosa e		o			
-				Materiale di riporto costituito da sali ghiaia e frammenti di laterizi	bia con poca	1	ciec			
3 _	- 2.70 	41.01		Sabbia con ghiaia e ciottoli di colori	e grigio chiaro		Tratto cieco			
4 _	4.45	39.26	00000000							
5	5.00	38.71	00000	Sabbia con ghiaia e ciottoli di colore	e nocciola	1				
6										
-	-			Sabbia con ghiaia e ciottoli di colore	e grigio chiaro					
7 _	7.50	20.04	0.0.00000							
8 _	7.50	36.21		Ghiaia in matrice di limo e sabbia fi nocciola-grigio	ne di colore					
9	9.00	34.71		Sabbia e ghiaia con rari ciottoli di c	olore	a 16/07/15)				9.0 r
10	10.00	33.71	0.0.0j.o.	grigio-nocciola		in dat				
	10.50	33.21	0 0 0	Ghiaia in matrice sabbiosa di colore	grigio-nocciola	rilevato				
11 _	_					Hs: 8.0m (rilevato in data	filtrante eno			
12							Tratto filtra			
13	- - - -									
14	- - - -			Ghiaia in matrice sabbiosa-limosa o grigio-nocciola con ciottoli	li colore					
15										14.5 15.0
16	- - - -									
17										
18	18.00	25.71	di addusiona nei	novio DNI 1200 - tartta 24 - dia	onto di sente dell'	d: In	ente/Località			Progetto
SIII	OGICHE OUT TAMBLE	origine ar	ntropica - Comune	naria DN 1200 – tratta 34 – ritrovam e di Fontaniva – Caratterizzazione ar 1/2006 – Foiti dello indegini ambiento	nbientale ai sens	si	Veneto Acque S	S.p.A. / Fontaniv		903.15.24
		Schede	4∠ uei D.Lgs. 152 e stratiorafich	/2006 - Esiti delle indagini ambienta ne - <b>Sondaggi</b>	II	Da	21.07.15 Nomef	sondaggi.sd	g Revisio	









**Sondaggio:** Pz1 **ID test:** Pz1 (10.0-10.5)

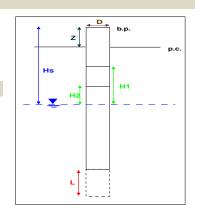
Cantiere: Fontaniva Data: 10/07/2015 Operatore: Dr. Francesco Mattiello

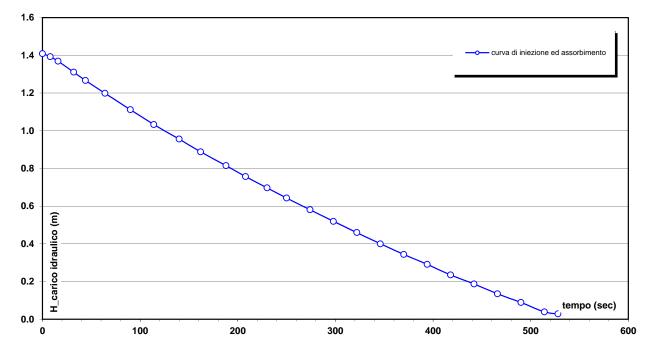
#### **GEOMETRIA DELLA CAMERA**

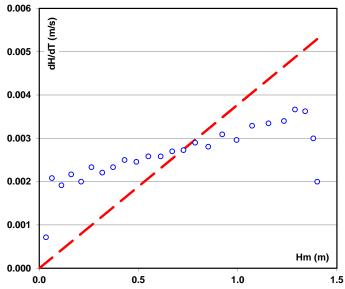
Profondità fondo foro (m da p.c.) 10.5 Profondità rivestimento (m da p.c.) 10.0 [L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

#### DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) - Tipologia di esecuzione:


Durata della prova (min) 8.8 immissione a carico variabile


Litologia: Ghiaia in matrice sabbiosa-limosa con ciottoli

Carico idraulico iniziale (m) 1.409 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_M}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 5.4E-05

Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione**: trasduttore di pressione piezoresistivo



Interpretazione delle prove Lefranc
dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali
di origine antropica - Comune di Fontaniva - Caratterizzazione ambientale ai sensi
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali

**Sondaggio:** Pz1 **ID test:** Pz1 (14.5-15.0)

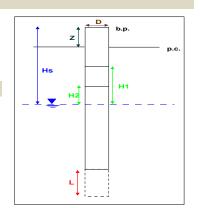
Cantiere: Fontaniva Data: 10/07/2015 Operatore: Dr. Francesco Mattiello

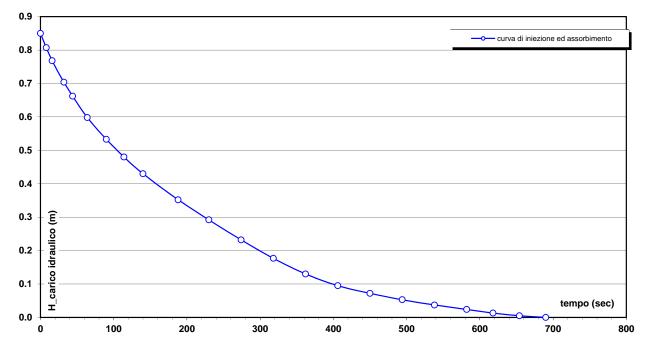
#### **GEOMETRIA DELLA CAMERA**

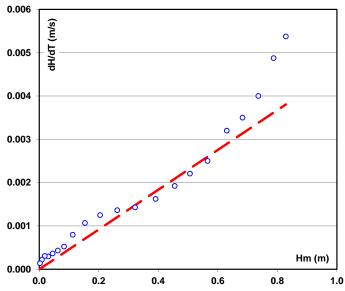
Profondità fondo foro (m da p.c.) 15.0 Profondità rivestimento (m da p.c.) 14.5 [L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

# DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) - Tipologia di esecuzione:


Durata della prova (min) 11.5 immissione a carico variabile


Litologia: Sabbia debolmente limosa

Carico idraulico iniziale (m) 0.85 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_M}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 6.6E-05

Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione**: trasduttore di pressione piezoresistivo

Sinergie	i DE geologic	FG.	<b>EO</b>
14.44		3	

Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali
di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi
dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali

Interpretazione delle prove Lef	anc
---------------------------------	-----

	Cliente/Località		Pi	rogetto	
si	Veneto Acc	jue Spa / Fontaniva (Pl	D)   9	903	.15.24
	Data	Nomefile	Revisione	е	Allegato
	03.08.15	lefranc Pz1 L2.xls	01	1	08b

Sondaggio: PZ2 ID test: Pz2 (7.0-7.5)

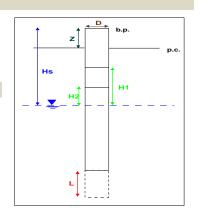
Cantiere: Fontaniva Data: 09/07/2015 Operatore: Dr. Francesco Mattiello

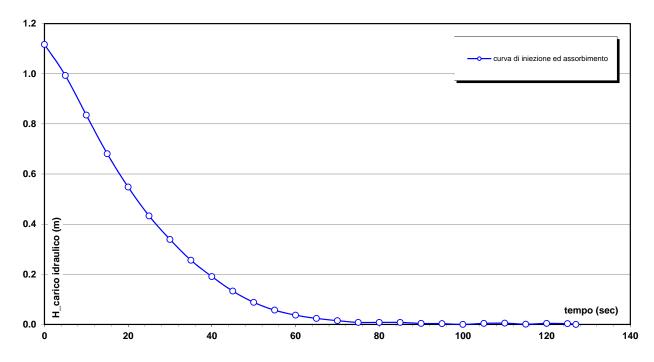
#### **GEOMETRIA DELLA CAMERA**

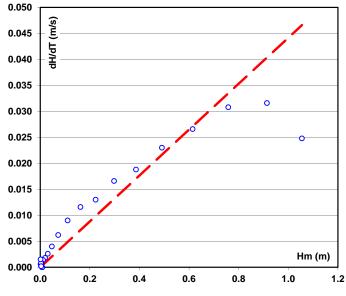
Profondità fondo foro (m da p.c.) 7.5 Profondità rivestimento (m da p.c.) 7.0 [L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

#### DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) 5.96 Tipologia di esecuzione:


Durata della prova (min) 2.1 immissione a carico variabile


Litologia: ghiaia con sabbia e ciottoli

Carico idraulico iniziale (m) 1.117 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_M}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 6.3E-04

Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione:** trasduttore di pressione piezoresistivo

Sinergie		rg the per l'a	
18.44	建		

**Sondaggio:** PZ2 **ID test:** Pz2 (13.0-13.5)

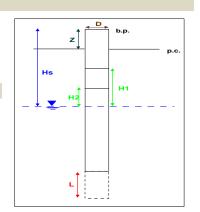
Cantiere: Fontaniva Data: 09/07/2015 Operatore: Dr. Francesco Mattiello

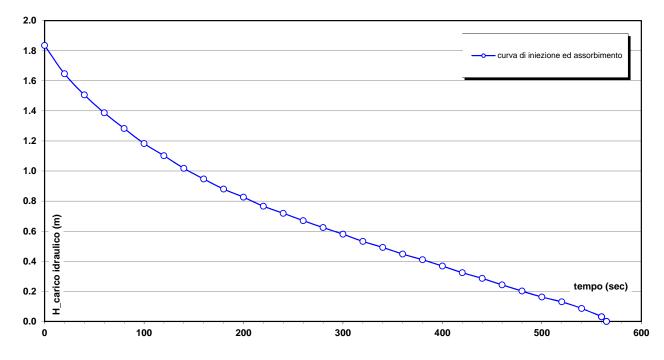
#### **GEOMETRIA DELLA CAMERA**

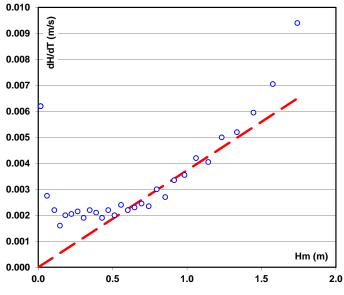
Profondità fondo foro (m da p.c.) 13.5 Profondità rivestimento (m da p.c.) 13.0 [L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

# DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) - Tipologia di esecuzione:


Durata della prova (min) 9.4 immissione a carico variabile


Litologia: Ghiaia con sabbia e ciottoli in matrice limosa

Carico idraulico iniziale (m) 1.835 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_{M}}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 5.4E-05

Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione**: trasduttore di pressione piezoresistivo



Interpretazione delle prove Lefranc
dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali
di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali

Cliente/Località			Progetto	
Veneto Aco	que Spa / Fontaniva (Pl	,		3.15.24
Data	Nomefile	Revision	one	Allegato
03.08.15	lefranc Pz2 I 2 xls	C	)1	08d

Sondaggio: Pz3 ID test: Pz3 (8.5-9.0)

Cantiere: Fontaniva Data: 10/07/2015 Operatore: Dr. Francesco Mattiello

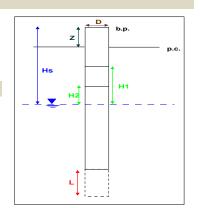
#### GEOMETRIA DELLA CAMERA

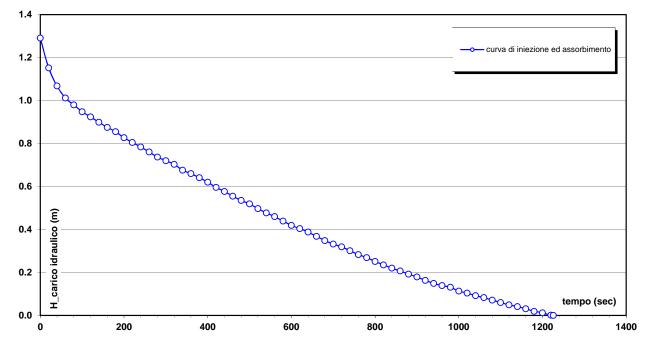
Profondità fondo foro (m da p.c.) 9.0 Profondità rivestimento (m da p.c.) 8.5

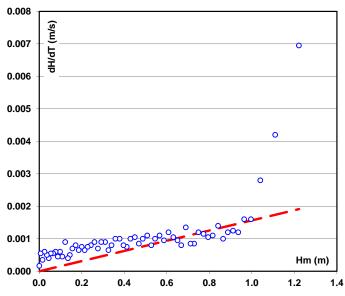
[L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

#### DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) - Tipologia di esecuzione:


Durata della prova (min) 20.4 immissione a carico variabile


Litologia: Ghiaia in matrice sabbiosa-limosa

Carico idraulico iniziale (m) 1.291 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_M}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 2.2E-05

Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione**: trasduttore di pressione piezoresistivo

Sinergie		ener fra	
100 11	靈	3	

Interpretazione delle prove Lefranc
dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali
di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali

**Sondaggio**: Pz3 **ID** test: Pz3 (14.5-15.0)

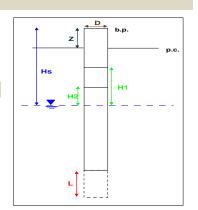
Cantiere: Fontaniva Data: 10/07/2015 Operatore: Dr. Francesco Mattiello

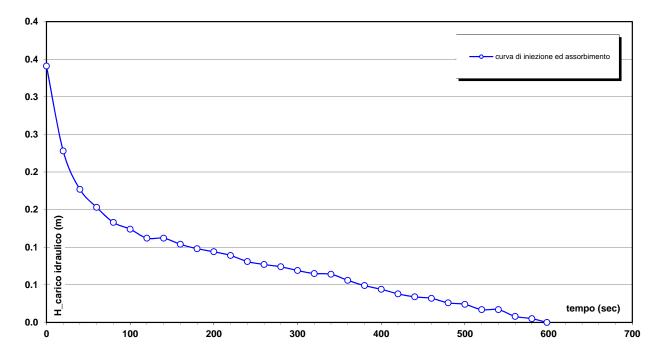
# GEOMETRIA DELLA CAMERA

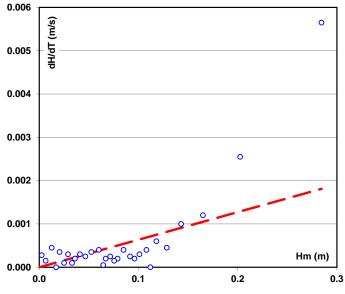
Profondità fondo foro (m da p.c.) 15.0 Profondità rivestimento (m da p.c.) 14.5 [L] Lunghezza del tratto di prova (m) 0.5 [Z] Altezza bocca pozzo (m su p.c.) -

[D] Diametro del foro in prova (m) 0.178 [A] Area di base lanterna (m²) 0.025

#### DATI DI PROVA


[Hs] Livello statico falda (m da b.p.) - Tipologia di esecuzione:


Durata della prova (min) 10.0 immissione a carico variabile


Litologia: Ghiaia in matrice sabbiosa-limosa con ciottoli

Carico idraulico iniziale (m) 0.341 Carico idraulico residuo (m): 0

[C] Coefficiente di forma (tratto da tabella AGI, 1977) 1.734







$$K = \frac{A \cdot \Delta H}{C \cdot \Delta t \cdot H_M}$$

valore calcolato con il metodo della regressione lineare sui dati  $H_{m}\text{-}\Delta H/\Delta T$ 

K (m/s) = 9.1E-05

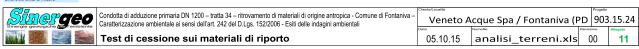
Acquisizione dei dati: automatica in continuo

**Strumentazione di acquisizione**: trasduttore di pressione piezoresistivo

Sinergle	re es l'a	
104.1/	3	

Interpretazione delle prove Lefranc
di origine antropica - Comune di Fontaniva – Caratta 34 – Introvaniento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sens dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali

			Droi	ID campione ondità m da p.c.	T1/A 0.20 - 4.00	T2/A 0.00 - 5.80		3/A - 4.50	T4/A 0.00 - 5.50	T5/A 0.10 - 3.40	T6/A 0.00 - 4.50	T7/A 0.40 - 4.30	C1 da cumulo
			FIO	Laboratorio	SOVECO srl	SOVECO srl	SOVECO srl	ARPAV	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl
			Data di	campionamento	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015
Rif. normativo: D. Lg	ns 152/06 - Parte	IV - Titolo V - A		apporto di prova	112027	112028	112029	438419 rev. 0	112030	112031	112032	112033	112034
ANALITI	U.M.	U.M. ARPAV	Col. A	Col. B									
Parametri chimico-fisici		ARFAV											
razione < 2mm razione compresa tra (2mm - 2cm)	%		-		67 33	62 38	68 32	* 37.7	61 39	62 38	79 21	67 33	61 39
Residuo secco a 105 °C	%		-	-	87.4	79.8	92.4	92.3	86.2	85.5	85.4	83.0	89.4
composti inorganici antimonio	mg/kg s.s.		10	30	<2.0	<2.0	<2.0	<5	<2.0	2.0	<2.0	<2.0	<2.0
ursenico Herillio	mg/kg s.s. mg/kg s.s.		20	50 10	5.4 <0.5	4.3 <0.5	5.8 <0.5	6 <0.5	5.5 <0.5	7.0 <0.5	9.2 <0.5	9.2	6.3 <0.5
Cadmio	mg/kg s.s.		2	15	<0.4	<0.4	<0.4	<1	<0.4	<0.4	<0.4	<0.4	<0.4
Cobalto Cromo Totale	mg/kg s.s. mg/kg s.s.		20 150	250 800	3.7 11.4	3.1 13.5	3.5 9.4	<5 8	3.2 22.2	4.4 18.9	5.6 14.2	4.2 14.2	3.4 9.5
Cromo Esavalente Mercurio	mg/kg s.s. mg/kg s.s.		2	15 5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<1 <1	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5
lichel	mg/kg s.s.		120	500	10.4	9.8	9.2	8	17.0	15.0	12.5	11.3	9.1
Piombo	mg/kg s.s. mg/kg s.s.		100 120	1000 600	17.0 16.6	23.8 16.0	15.3 25.9	15 24	17.7 25.3	37.8 33.0	<b>111</b> 55.9	27.0 33.8	11.4 13.5
elenio	mg/kg s.s.		3	15	<1.2	<1.2	<1.2	<3	<1.2	<1.2	<1.2	<1.2	<1.2
fallio Vanadio	mg/kg s.s. mg/kg s.s.		90	10 250	<0.5 <b>110</b>	<0.5 12.0	<0.5 12.1	<1 12	<0.5 8.8	<0.5 11.9	<0.5 14.2	<0.5 15.5	<0.5 7.9
inco Sianuri liberi	mg/kg s.s. mg/kg s.s.		150 1	1500 100	54.1 <0.1	51.0 <0.1	61.9 <0.1	59 <1	55.6 <0.1	102 <0.1	103 <0.1	81.6 <0.1	35.7 <0.1
luoruri	mg/kg s.s.		100	2000	<10.0	<10.0	<10.0	<10	<10.0	<10.0	<10.0	<10.0	<10.0
aromatici Policiclici laftalene	mg/kg s.s.				<0.01	<0.01	<0.01	*	0.03	<0.01	<0.01	<0.01	0.01
cenaftilene	mg/kg s.s.			-	<0.01	<0.01	<0.01	*	<0.01	<0.01	<0.01	<0.01	<0.01
Cenaftene Fluorene	mg/kg s.s. mg/kg s.s.		-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	*	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
enantrene Antracene	mg/kg s.s. mg/kg s.s.			-	<0.01 <0.01	0.13 0.05	<0.01 <0.01	*	0.05 0.02	0.01 0.01	<0.01 <0.01	<0.01 <0.01	0.02 0.01
luorantene	mg/kg s.s.		-		<0.01	0.27	0.01	*	0.04	0.03	<0.01	0.06	0.06
Benzo (e) pirene Perilene	mg/kg s.s. mg/kg s.s.			-	<0.01 <0.01	0.08	<0.01 <0.01	*	<0.01 <0.01	0.02 0.01	<0.01 <0.01	0.02 <0.01	0.03 0.01
Benzo (a) antracene (25)	mg/kg s.s.		0.5	10	<0.01	0.13	<0.01	<0.05	0.03	0.02	<0.01	0.02	0.04
Benzo (a) pirene (26) Benzo (b) fluorantene (27)	mg/kg s.s. mg/kg s.s.		0.1 0.5	10	<0.01 <0.01	<b>0.13</b> 0.11	0.01 0.01	<0.05 <0.05	<0.01 <0.01	0.03	<0.01 <0.01	0.04	0.04 0.04
Benzo (k) fluorantene (28) Benzo (g,h,i) perilene (29)	mg/kg s.s. mg/kg s.s.		0.5 0.1	10 10	<0.01 <0.01	0.09 <0.01	0.01 <0.01	<0.05 <0.05	<0.01 <0.01	0.02 0.02	<0.01 <0.01	0.02 <0.01	0.03 <0.01
Crisene (30)	mg/kg s.s.		5	50	<0.01	0.13	0.01	<0.05	0.03	0.02	<0.01	0.03	0.04
Dibenzo (a,e) pirene (31) Dibenzo (a,l) pirene (32)	mg/kg s.s. mg/kg s.s.		0.1	10 10	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.10 <0.10	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Dibenzo (a,i) pirene (33)	mg/kg s.s.		0.1	10	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo (a,h) pirene (34) Dibenzo (a,h) antracene (35)	mg/kg s.s. mg/kg s.s.		0.1 0.1	10	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
ndeno (1,2,3 - cd) pirene (36) Pirene (37)	mg/kg s.s. mg/kg s.s.		0.1 5	50	<0.01 <0.01	<b>0.11</b> 0.18	0.01 0.01	<0.05 <0.05	<0.01 0.03	0.03	<0.01 <0.01	<0.01 0.04	0.04 0.05
Sommatoria policiclici aromatici (da 25 a 34)			10	100	<1.0	<1.0	<1.0	*	<1.0	<1.0	<1.0	<1.0	<1.0
Alifatici Clorurati Cancerogeni Clorometano	mg/kg s.s.		0.1	5	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02
Diclorometano	mg/kg s.s.		0.1	5	<0.02	<0.02	<0.02	* * * * * * * * * * * * * * * * * * * *	<0.02	<0.02	<0.02	<0.02	<0.02
Frictorometano  Cloruro di vinile	mg/kg s.s. mg/kg s.s.		0.1 0.01	5 0.1	<0.02 <0.005	<0.02 <0.005	<0.02 <0.005	<0.10 <0.10	<0.02 <0.005	<0.02 <0.005	<0.02 <0.005	<0.02 <0.005	<0.02 <0.005
,2-Dicloroetano	mg/kg s.s. mg/kg s.s.		0.2	5	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.10 <0.10	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
Tricloroetilene	mg/kg s.s.		1	10	<0.02	<0.02	<0.02	<0.10	<0.02	<0.02	<0.02	<0.02	<0.02
Tetracloroetilene Alifatici Clorurati non Cancerogeni	mg/kg s.s.		0.5	20	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dicloroetano	mg/kg s.s.		0.5	30 15	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.10 *	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
,2-Dictoroetilene cis	mg/kg s.s. mg/kg s.s.		-	-	*	*	*	<0.10	*	*	*	*	*
,2-Dicloroetilene trans ,1,1-Tricloroetano	mg/kg s.s. mg/kg s.s.		0.5	50	<0.05	* <0.05	* <0.05	<0.10 <0.10	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
,2-Dicloropropano	mg/kg s.s.		0.3	5	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
,1,2-Tricloroetano ,2,3-Tricloropropano	mg/kg s.s. mg/kg s.s.		0.5	15 10	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.10 <0.10	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
,1,2,2-Tetracloroetano Nifatici Alogenati Cancerogeni	mg/kg s.s.		0.5	10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
Fribromometano	mg/kg s.s.		0.5	10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
,2-Dibromoetano Dibromoclorometano	mg/kg s.s. mg/kg s.s.		0.01	0.1	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.10 <0.10	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05
Bromodiclorometano	mg/kg s.s.		0.5	10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05
Sommatoria organoalogenati  Diossine - Furani 2,3,7,8 Clorosostituiti	mg/kg s.s.		•	•				<0.10					
2,3,7,8 - TCDD 1,2,3,7,8 - PCDD	μg/kg ss μg/kg ss	ng/kg s.s. ng/kg s.s.		-	<0.0002 <0.0002	*	<0.0002 0.00566	<0.20 <1.00	*	*	<0.0002 0.00054	*	*
,2,3,4,7,8 - HxCDD	μg/kg ss	ng/kg s.s.			<0.0002	*	0.00470	<1.00	*	*	0.00061	*	*
,2,3,6,7,8 - HxCDD ,2,3,7,8,9 - HxCDD	µg/kg ss µg/kg ss	ng/kg s.s. ng/kg s.s.			0.0009	*	0.01354 0.00838	<1.00 <1.00	*	*	0.001 0.00089	*	*
,2,3,4,6,7,8 - HpCDD	μg/kg ss	ng/kg s.s.		-	0.0174		0.115	11.0	*	*	0.0157	*	*
2,3,7,8 - TCDF	µg/kg ss µg/kg ss	ng/kg s.s. ng/kg s.s.			0.1140 0.0169	*	0.772 0.0309	171.0 3.00	•	*	0.098 0.00258	*	*
,2,3,7,8 - PCDF	μg/kg ss μg/kg ss	ng/kg s.s. ng/kg s.s.		-	0.0014 0.00174	*	0.0268 0.0441	1.74 2.58	*	*	0.00271 0.00426	*	*
,2,3,4,7,8 - HxCDF	μg/kg ss	ng/kg s.s.		-	0.00224	*	0.0448	2.82	*	*	0.00527	*	*
,2,3,6,7,8 - HxCDF ,3,4,6,7,8 - HxCDF	µg/kg ss µg/kg ss	ng/kg s.s. ng/kg s.s.			0.00189 0.00151	*	0.0464 0.0603	2.04 2.95	*	*	0.00425 0.00462	*	*
,2,3,7,8,9 - HxCDF	μg/kg ss	ng/kg s.s.			0.00032	*	0.00214	<1.00	*	*	<0.0002	*	*
,2,3,4,6,7,8 - HpCDF ,2,3,4,7,8,9 - HpCDF	µg/kg ss µg/kg ss	ng/kg s.s. ng/kg s.s.		-	0.00897 0.00085	*	0.1987 0.0167	12.60 1.92	*	*	0.0246 0.00287	*	*
OCDF ossicità equivalente secondo (i-teq)	μg/kg ss	ng/kg s.s. ng/kg s.s.	0.00001	0.0001	0.0211 0.000017	*	0.50779 <b>0.0000445</b>	24.90 0.00000291	*	*	0.0361 0.000043	*	*
СВ	mg/kg ss			0.0001	J.0000017	1	0.0000445				0.0000043		
CB totali roclor 1016	mg/kg s.s. mg/kg s.s.	μg/kg ss	0.06	5	* <0.006	* <0.006	* <0.006	0.00851 *	* <0.006	* <0.006	* <0.006	* <0.006	* <0.006
roclor 1221	mg/kg s.s.		0.06	5	<0.006	<0.006	<0.006	*	<0.006	<0.006	<0.006	<0.006	<0.006
roclor 1242 roclor 1248	mg/kg s.s. mg/kg s.s.		0.06 0.06	5	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006	*	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006	<0.006 <0.006
roclor 1254	mg/kg s.s.		0.06	5	<0.006	<0.006	<0.006	*	<0.006	<0.006	<0.006	<0.006	<0.006
roclor 1260 Irocarburi	mg/kg s.s.		0.06	5	0.014	0.038	0.014	*	0.029	0.059	0.069	0.120	0.006
rocarburi leggeri C < 12 rocarburi pesanti C > 12	mg/kg s.s. mg/kg s.s.		10 50	250 750	<2 16	<2 <b>60</b>	<2 8	<10 <20	<2 26	<2 11	<2 34	<2 128	<2 11
Itri Alifatici Clorurati			30										
Cloroetano etracloruro di carbonio	mg/kg s.s. mg/kg s.s.		-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	*	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Esacloro-1,3-butadiene	mg/kg s.s.		-	-	<0.05	<0.05	<0.05	*	<0.05	<0.05	<0.05	<0.05	<0.05




Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali

					ID campione	T1/B	T2/B		3/B	T6/B	T7/B
				Prof	•	4.00 - 4.30 SOVECO srl	5.80 - 6.00 SOVECO srl			4.50 - 5.00 SOVECO srl	4.30 - 4.80 SOVECO srl
State				Data di							19/06/2015
MAND   SA				N° r	apporto di prova	112035	112036	112037	438422 rev. 0	112038	112039
The content of the	Rif. normativo: D. Lgs 1	52/06 - Parte IV - Titolo V - All.									
		U.M.		Col. A	Col. B						
Processor Proc		%			-	40	64	74	*	25	49
South pays	razione compresa tra (2mm - 2cm)	%				60	36	26		75	51
March		%		-	-	96.3	94.3	96.3	96.5	87.8	94.4
Section   Sect	Antimonio										<2.0
Description											2.4 <0.5
Contract	Cadmio	mg/kg s.s.		2	15	<0.4	<0.4	<0.4	<1	<0.4	<0.4
Contractors											<2.0 <5.0
Section   Color	Cromo Esavalente	mg/kg s.s.		2	15	<0.2	<0.2	<0.2	<1	<0.2	<0.2
Second							<u> </u>				<0.5 <5.0
Section	Piombo	mg/kg s.s.		100	1000	<5.0	5.4	5.2	6	<5.0	5.3
Table											6.7 <1.2
Section	allio			1	10	<0.5	<0.5	<0.5	<1	<0.5	<0.5
Company   Comp							-				<5.0 20.2
	Cianuri liberi			1	100	<0.1	<0.1	<0.1	<1	<0.1	<0.1
Martin   1995   1		mg/kg s.s.		100	2000	<10.0	<10.0	<10.0	<10	<10.0	<10.0
Section   Sect	laftalene				-						<0.01
Page							-				<0.01 <0.01
STATESTON	luorene	mg/kg s.s.				<0.01	<0.01	<0.01		<0.01	<0.01
Scientification											<0.01 <0.01
Section	luorantene	mg/kg s.s.		-		<0.01	<0.01	<0.01		<0.01	<0.01
Bank in the service 20											<0.01 <0.01
See 10   Company   Compa	Benzo (a) antracene (25)	mg/kg s.s.		0.5	10	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01
Barriel (Description)	171 17										<0.01 <0.01
Semant   S	Benzo (k) fluorantene (28)	mg/kg s.s.		0.5	10	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01
December   Property										<0.01 <0.01	
Bears   Depart   Property   Pro	Dibenzo (a,e) pirene (31)			0.1	10	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01
Description   Property   1											<0.01 <0.01
Marie Color	Dibenzo (a,h) pirene (34)			0.1	10	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01
Prompty   Prom	. ,										<0.01 <0.01
Marie Convention	Pirene (37)			5	50	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01
Decompton		mg/kg s.s.		10	100	<1.0	<1.0	<1.0	*	<1.0	<1.0
Trisponence	•	mg/kg s.s.									<0.02
Date of wide									-		<0.02 <0.02
1.501-container	Cloruro di vinile			0.01	0.1	<0.005	<0.005	<0.005	<0.10	<0.005	<0.005
Teconomiene	-										<0.02 <0.02
National Contention   Property    ricloroetilene			1	10	<0.02	<0.02	<0.02	<0.10	<0.02	<0.02	
11-05/contention		mg/kg s.s.		0.5	20	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05
1.0.0000000000000000000000000000000000	,1-Dicloroetano										<0.05
12-03-05-05-06-06-06-06-06-06-06-06-06-06-06-06-06-											<0.05 *
1200crospose	,2-Dicloroetilene trans				-				<0.10		*
15.27 Informationation											<0.05 <0.05
11.22 First photochorder											<0.05
Material Register Concerning on											<0.05 <0.05
1.2 Demonsteration   may be s.		mg/kg 5.5.			10	10.00	40.00	40.00	40.10	-0.00	-0.00
Demonstration											<0.05 <0.005
Semestrian Gragosologoral   mg/kg s.s.	Dibromoclorometano	mg/kg s.s.		0.5	10	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05
PCB total					10						<0.05 *
Ancient   Maryle   Section   M	PCB						1				
Acodor 1221			μg/kg ss						<0.10		* <0.006
Rooter 1286	voclor 1221	mg/kg s.s.		0.06	5	<0.006	<0.006	<0.006		<0.006	<0.006
Noode   1254   mg/kg s.   0.06   5   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006   <0.006											<0.006 <0.006
Idrocarburi legger   C   2	Aroclor 1254	mg/kg s.s.		0.06	5	<0.006	<0.006	<0.006	*	<0.006	<0.006
drocarburi leggeri C < 12   mg/kg s.s.   10   258   <2   <2   <2   <10   <2   <2   <10   <2   <2   <10   <2   <2   <10   <2   <2   <2   <10   <2   <2   <2   <10   <2   <2   <2   <10   <2   <2   <2   <10   <2   <2   <2   <10   <2   <2   <2   <2   <10   <2   <2   <2   <2   <10   <2   <2   <2   <2   <10   <2   <2   <2   <2   <10   <2   <2   <2   <2   <2   <2   <10   <2   <2   <2   <2   <2   <2   <2   <		mg/kg s.s.		0.06	5	<0.006	<0.006	<0.006	*	<0.006	<0.006
Altra Alifatic Clorurati	drocarburi leggeri C < 12										<2
Clorelation		mg/kg s.s.		50	750	<5	<5	<5	<20	<5	<5
Esadoro-1,3-butadiene	Cloroetano			-	-						<0.05
Dissine - Furant 2,3,7,8 Clorosostituiti   2,3,7,8 - TCDD					-						<0.05 <0.05
1,2,3,7,8 - PCDD       ng/kg s.s.       '       '       <1,00	Diossine - Furani 2,3,7,8 Clorosostituiti	mg/ng a.a.		-	-						
1,2,3,4,7,8 - HxCDD       ng/kg s.s.       '       '       1,00       '         1,2,3,6,7,8 - HxCDD       ng/kg s.s.       '       '       1,00       '         1,2,3,4,6,7,8 - HxCDD       ng/kg s.s.       '       '       1,00       '         1,2,3,4,6,7,8 - HxCDD       ng/kg s.s.       '       '       1,00       '         OCDD       ng/kg s.s.       '       '       2,00       '         1,2,3,7,8 - PCDF       ng/kg s.s.       '       '       4,00       '         1,2,3,7,8 - PCDF       ng/kg s.s.       '       '       1,00       '         2,3,4,7,8 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,7,8 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,8,9 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,8,9 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,7,8 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,7,8 - HxCDF       ng/kg s.s.       '       '       1,00       '         1,2,3,4,7,8 - HxCDF       ng/kg s.s.       '											*
1,2,3,7,8,9 - HxCDD       ng/kg s.s.       *       *       *       *       *       *       1.00       *         1,2,3,4,6,7,8 - HpCDD       ng/kg s.s.       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * <td< td=""><td>,2,3,4,7,8 - HxCDD</td><td></td><td>ng/kg s.s.</td><td></td><td></td><td></td><td></td><td></td><td>&lt;1.00</td><td></td><td>*</td></td<>	,2,3,4,7,8 - HxCDD		ng/kg s.s.						<1.00		*
1,2,3,4,6,7,8 - HpCDD       ng/kg s.s.       *       *       < 1.00											*
2,3,7,8 - TCDF       ng/kg s.s.       *       *       <0.20	,2,3,4,6,7,8 - HpCDD					*	*	*	<1.00	*	*
1,2,3,7,8 - PCDF       ng/kg s.s.       *       *       4.00       *         2,3,4,7,8 - PCDF       ng/kg s.s.       *       *       *       4.00       *         1,2,3,4,7,8 - HxCDF       ng/kg s.s.       *       *       *       *       4.00       *         1,2,3,7,8 - HxCDF       ng/kg s.s.       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *											*
1,2,3,4,7,8 - HxCDF       ng/kg s.s.       *       *       <1.00	,2,3,7,8 - PCDF					*	*	*	<1.00	*	*
1,2,3,6,7,8 - HxCDF											*
1,2,3,7,8,9 - HxCDF	,2,3,6,7,8 - HxCDF					*	*	*	<1.00	*	*
1,2,3,4,6,78 - HpCDF     ng/kg s.s.     *     *      1.00     *       1,2,3,4,7,89 - HpCDF     ng/kg s.s.     *     *     *     1.00     *       OCDF     ng/kg s.s.     *     *     *	2,3,4,6,7,8 - HxCDF		ng/kg s.s.								*
1,2,3,4,7,8,9 - HpCDF     ng/kg s.s.     *     *          OCDF     ng/kg s.s.     *     *											*
	,2,3,4,7,8,9 - HpCDF		ng/kg s.s.								*
Tossicità equivalente secondo (i-teq) mg/kg ss ng/kg s.s. * * * * *											*
Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali	Condotta di adduzi			ta 34 – ritr	ovamento di	materiali di orio	gine antropica - C	omune di Fontar			a (PD) Progetto 903.15.24

		Rife Rifiuti non pe					DM 05.04.06		nato 3		
		Laboratorio	SOVECO srl	SOVECO srl	SOVECO srl	ARPAV	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl
	Data	di campionamento	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015
	N.	° rapporto di prova	112019	112020	112021	438421	112022	112023	112024	112025	112026
Analita	unità di misura	Limiti	T1/A tq	T2/A tq	T3/	A tq	T4/A tq	T5/A tq	T6/A tq	T7/A tq	C1 tq
Cloruri	mg/L	100	<5.0	<5.0	<5.0	<5	<5.0	<5.0	<5.0	<5.0	<5.0
Fluoruri	mg/L	1.5	0.2	0.4	0.2	0.65	0.4	0.4	0.2	0.6	0.3
Solfati	mg/L	250	<10.0	11.3	<10.0	<5	12.2	11.7	33.4	<10.0	13.9
Nitrati	mg/L	50	<5.0	8.6	<5.0	<5	<5.0	<5.0	<5.0	<5.0	<5.0
Cianuri	μg/L	50	<10	<10	<10	<10	<10	<10	<10	<10	<10
COD	mg/L	30	5	19	6	24	7	10	10	15	9
Conducibilità	μS/cm	-	71	130	75		132	136	209	126	113
рН	unità di pH	5.5 < > 12.0	9.9	9.2	9.7	8.5	8.3	8.2	8.9	8.3	8.4
Arsenico	μg/L	50	<5	<5	<5	14	6	<5	<5	7	6
Bario	mg/L	1	<0.10	<0.10	<0.10	0.023	<0.10	<0.10	<0.10	<0.10	<0.10
Berillio	μg/L	10	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmio	μg/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalto	μg/L	250	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cromo totale	μg/L	50	<5	<5	<5	<10	<5	<5	<5	<5	<5
Mercurio	μg/L	1	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5
Nichel	μg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5
Piombo	μg/L	50	<5	<5	<5	12	<5	<5	<5	<5	<5
Rame	mg/L	0.05	<0.01	0.02	<0.01	0.036	<0.01	<0.01	<0.01	<0.01	<0.01
Selenio	μg/L	10	<2	<2	<2	<5	<2	<2	3	<2	<2
Vanadio	μg/L	250	<20	<20	<20	10	<20	<20	<20	<20	<20
Zinco	mg/L	3	<0.10	<0.10	<0.10	0.029	<0.10	<0.10	<0.10	<0.10	<0.10
Amianto	mg/L	30	<0.0024	*	<0.0024	*	*	*	<0.0024	*	*

		Ris	Riferimen ultati confror				o dal DM 05. tolo V, Parte					
			Laboratorio	SOVECO srl	SOVECO srl	SOVECO srl	ARPAV	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl	SOVECO srl
			di campionamento	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015
		N.	° rapporto di prova	112019	112020	112021	438421	112022	112023	112024	112025	112026
Analita	unità di misura dei risultati	unità di misura delle CSC	Limiti CSC - Tabella 2	T1/A tq	T2/A tq	T3/.	A tq	T4/A tq	T5/A tq	T6/A tq	T7/A tq	C1 tq
Cloruri	mg/L	-	-	<5.0	<5.0	<5.0	<5	<5.0	<5.0	<5.0	<5.0	<5.0
Fluoruri	mg/L	μg/L	1500	200	400	200	650	400	400	200	600	300
Solfati	mg/L	mg/L	250	<10.0	11.3	<10.0	<5	12.2	11.7	33.4	<10.0	13.9
Nitrati	mg/L	-	-	<5.0	8.6	<5.0	<5	<5.0	<5.0	<5.0	<5.0	<5.0
Cianuri	μg/L	μg/L	50	<10	<10	<10	<10	<10	<10	<10	<10	<10
COD	mg/L	-	-	5	19	6	24	7	10	10	15	9
Conducibilità	µS/cm	-	-	71	130	75	*	132	136	209	126	113
pH	unità di pH	-	-	9.9	9.2	9.7	8.5	8.3	8.2	8.9	8.3	8.4
Arsenico	μg/L	μg/L	10	<5	<5	<5	14	6	<5	<5	7	6
Bario	mg/L	-	-	<0.10	<0.10	<0.10	0.023	<0.10	<0.10	<0.10	<0.10	<0.10
Berillio	µg/L	μg/L	4	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmio	μg/L	μg/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalto	μg/L	µg/L	50	<5	<5	<5	<5	<5	<5	<5	<b>&lt;</b> 5	<5
Cromo totale	µg/L	μg/L	50	<5	<5	<5	<10	<5	<5	<5	<5	<5
Mercurio	μg/L	μg/L	1	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5
Nichel	µg/L	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5
Piombo	μg/L	μg/L	10	<5	<5	<5	12	<5	<5	<5	<b>&lt;</b> 5	<5
Rame	mg/L	μg/L	1000	<10	20	<10	30.6	<10	<10	<10	<0.10	<10
Selenio	μg/L	μg/L	10	<2	<2	<2	<5	<2	<2	3	<2	<2
Vanadio	μg/L	-	-	<20	<20	<20	10	<20	<20	<20	<20	<20
Zinco	mg/L	μg/L	3000	<10	<10	<10	29	<10	<10	<10	<10	<10
Amianto	mg/L	-	-	<0.0024	*	<0.0024	*	*	*	<0.0024	*	*
differente unità di misura												



	ID campione	T1/A	T2/A	T3/A	T4/A	T5/A	T6/A	T7/A
	N° rapporto di prova	50615	50815	51015	51215	51415	51615	51815
Classificazione visiva	Descrizione geotecnica visiva	materiale di riporto grosso- fine frammisto a sabbia limosa grigio-marrone	materiale di riporto grosso - fine con limo sabbioso grigio - marrone	materiale di riporto grosso - fine frammisto a sabbia limosa grigio - marrone	materiale di riporto grosso - fine frammisto a limo sabbio argilloso grigio - marrone	materiale di riporto grosso - fine frammisto a sabbia limosa grigio - marrone	materiale di riporto grosso - fine con limo sabbioso grigio - marrone	materiale di riporto grosso - fine frammisto a limo sabbioso grigio -marrone
	Laboratorio	GEODATA S.a.s.	GEODATA S.a.s.	GEODATA S.a.s.	GEODATA S.a.s.	GEODATA S.a.s.	GEODATA S.a.s.	GEODATA S.a.s.
	Data di campionamento	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015
	N° rapporto di prova	50715	50915	51115	51315	51515	51715	51915
Natura componenti (UNI EN 13285)	Unità di misura							
Materiali litici, pietrisco, calcestruzzo, laterizi, refrattari etc	%	80.9	57	84.4	91.6	91.4	76.7	89.6
Vetro e scorie vetrose	%	4.9	2.2	0.3	5.0	2.6	0.0	10.0
Conglomerati bituminosi	%	7.6	0.0	0.6	0.0	0.0	0.0	0.0
Altri rifiuti minerali	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Materiale deperibile: carta, legno, fibre tessili etc. Materiali plastici cavi: corrugati, tubi etc.	%	3.6	10.9	13.5	3.4	1.4	1.4	0.1
Altri materiali: gesso, metalli, lana di roccia etc.	%	3.0	29.9	1.2	0.0	4.6	21.9	0.3
TOTALE	%	100.0	100.0	100.0	100.0	100.0	100.0	100.0



Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva - Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 - Esiti delle indagini ambientali

Analisi merceologica dei materiali di riporto

Veneto Acque Spa / Fontaniva (PD) 903.15.24

03.09.15 903_analisi_geotecniche.xls 00

12

		Piezometro	P	<b>z</b> 1	Pz2	Pz3
		Laboratorio chimico	SOVECO srl	ARPAV	SOVECO srl	SOVECO srl
		N° Rapporto di Prova	112786	444085 rev. 0	112787	112788
		Data prelievo	16/07/2015	16/07/2015	16/07/2015	16/07/2015
		CSC D. Lgs.				
ANALITA	u.m.	152/06- Tab. 2				
METALLI		200		2	F.C.	<5.0
Alluminio Antimonio	μg/l	200 5	6.3 <0.2	3 <1	5.6 <0.2	<0.2
Argento	μg/l	10	<0.2	<1	<0.2	<0.2
Arsenico	μg/l	10	1.2	1	1.5	2.4
Berillio	μg/l μg/l	4	<0.2	<1	<0.2	<0.2
Cadmio	μg/l	5	<0.2	<0.1	<0.2	<0.2
Cobalto	μg/l	50	0.3	<1	<0.2	0.3
Cromo totale	μg/l	50	0.4	<0.5	0.5	0.4
Cromo esavalente	μg/l	5	<2.0	<5	<2.0	<2.0
Ferro	μg/l	200	12.7	14	<5.0	<5.0
Mercurio	μg/l	1	<0.5	<0.2	<0.5	<0.5
Nichel	μg/l	20	0.5	<1	0.6	1.0
Piombo	μg/l	10	<1.0	<0.5	<1.0	<1.0
Rame	μg/l	1000	<1.0	3	<1.0	<1.0
Selenio	μg/l	10	<0.2	<5	<0.2	0.4
Manganese	μg/l	50	16.1	19	2.8	11.2
Tallio	μg/l	2	<0.2	<1	<0.2	<0.2
Zinco	μg/l	3000	<5.0	<5	<5.0	<5.0
INQUINANTI INORGANICI						
Boro	μg/l	1000	11.6	*	10.4	10.5
Cianuri liberi	μg/l	50	<10	<10	<10	<10
Fluoruri	μg/l	1500	<100	93	<100	<100
Nitriti	μg/l	500	<50	*	<50	120.0
Solfati	mg/l	250	17.2	•	17.3	17.8
COMPOSTI ORGANICI AROMATICI		4	40.0	40.00	40.0	40 O
Benzene	μg/l	1 50	<0.2 <1.0	<0.03	<0.2	<0.2 <1.0
Etilbenzene Stirene	μg/l	25	<1.0	<0.03	<1.0 <1.0	<1.0
Toluene	μg/l	15	<1.0	<0.03	<1.0	<1.0
p-Isopropiltoluene	μg/l	-	<0.2	*	<0.2	<0.2
2-Clorotoluene	μg/l μg/l	-	<0.2	*	<0.2	<0.2
4-Clorotoluene	μg/l		<0.2	*	<0.2	<0.2
ter-Butilbenzene	μg/l	-	<0.2	*	<0.2	<0.2
sec-Butilbenzene	μg/l	-	<0.2	*	<0.2	<0.2
m-p- Xilene	μg/l	•	<1.0		<1.0	<1.0
o-Xilene	μg/l	-	<1.0	- 0.10	<1.0	<1.0
n-Propilbenzene	μg/l	-	<0.2	*	<0.2	<0.2
Isopropilbenzene	μg/l	•	<0.2	*	<0.2	<0.2
Bromobenzene	μg/l	-	<0.2	*	<0.2	<0.2
1,3,5-Trimetilbenzene	μg/l	-	<0.2	*	<0.2	<0.2
1,2,4-Trimetilbenzene	μg/l	•	<0.2	*	<0.2	<0.2
POLICICLICI AROMATICI						
Naftalene	μg/l	-	<0.01	*	<0.01	<0.01
Acenaftilene	μg/l	•	<0.01	*	<0.01	<0.01
Acenaftene	μg/l	-	<0.01	*	<0.01	<0.01
Fluorene	μg/l	-	<0.01	*	<0.01	<0.01
Fenantrene	μg/l	-	<0.01	*	<0.01	<0.01
Antracene	μg/l	-	<0.01	*	<0.01	<0.01
Fluorantene	μg/l	-	<0.01	*	<0.01	<0.01
Pirene	μg/l	50	<0.01	<0.005	<0.01	<0.01
Benzo(a)antracene	μg/l	0.1	<0.01	<0.005	<0.01	<0.01
Crisene Renze (a) pirene	μg/l	5	<0.01	<0.005 *	<0.01	<0.01
Benzo(e)pirene	μg/l	- 0.01	<0.01	4	<0.01	<0.01
Benzo(a)pirene Perilene	μg/l	0.01 -	<0.01 <0.01	<0.005 *	<0.01 <0.01	<0.01 <0.01
	μg/l	0.01	<0.01	<0.005	<0.01	<0.01
Dibenzo(a,l)pirene	μg/l	0.01	<0.01	<0.005 *	<0.01	<0.01
Dibenzo(a,e)pirene	μg/l		<0.01	*	<0.01	<0.01
Dibenzo(a,i)pirene	μg/l		<0.01	*	<0.01	<0.01
Dibenzo(a,h)pirene	μg/l		<0.01	*	<0.01	<0.01
Benzo(b)fluorantene (31)	μg/l μg/l	0.1	<0.01	<0.005	<0.01	<0.01
Benzo(k)fluorantene (32)	μg/l	0.05	<0.01	<0.005	<0.01	<0.01
Benzo(g,h,i)perilene (33)	μg/l	0.01	<0.01	<0.005	<0.01	<0.01
Indeno(1,2,3-c,d)pirene (36)	μg/l	0.1	<0.01	<0.005	<0.01	<0.01
Sommatoria IPA (31,32,33,36)	μg/l	0.1	<0.04	<0.005	<0.04	<0.04
atona (0 ., 0 L, 0 0, 0 0)	μgn	<b>.</b>	J.01	3.000	5.04	U.UT

			Piezometro	P	z1	Pz2	Pz3
			Laboratorio chimico	SOVECO srl	ARPAV	SOVECO srl	SOVECO srl
			N° Rapporto di Prova	112786	444085 rev. 0	112787	112788
			Data prelievo	16/07/2015	16/07/2015	16/07/2015	16/07/2015
				10/01/2010	10/01/2010	10/01/2010	10/01/2010
ANALITA	u.m.	u.m.	CSC D. Lgs.				
ALIFATICI CLORURATI CANCEROGENI	0.111.	ARPAV	152/06- Tab. 2				
Clorometano			1.5	<0.2	*	<0.2	<0.2
Cloruro di vinile	μg/l μg/l	<del> </del>	0.5	<0.2	<0.05	<0.2	<0.2
1,2-Dicloroetano	μg/l		3	<0.2	<0.03	<0.2	<0.2
1.1-Dicloroetilene	μg/l	l	0.05	<0.01	<0.03	<0.01	<0.01
Triclorometano (cloroformio)	μg/l	<del> </del>	0.15	<0.05	<0.10	<0.05	<0.05
Tricloroetilene	μg/l		1.5	<0.2	<0.05	<0.2	<0.2
Tetracloroetilene	μg/l		1.1	<0.2	<0.05	<0.2	<0.2
Esaclorobutadiene	μg/l		0.15	<0.1	<0.05	<0.1	<0.1
Sommatoria organoclorurati	μg/l		-	<1.0	*	<1.0	<1.0
Sommatoria organoalogenati	μg/l		10	*	<1.0	*	±
ALIFATICI CLORURATI NON CANCEROGENI							_
1,1-Dicloroetano	μg/l	ļ	810	<0.2	<0.05	<0.2	<0.2
1,2-Dicloroetilene (cis-+trans-)	μg/l	ļ	60	<0.2	<0.05	<0.2	<0.2
1,2-Dicloroetilene	µg/l	ļ	<u> </u>	*	<0.03	*	*
1,2-Dicloroetilene (cis)	μg/l	ļ	ļi	*	<0.05	*	*
1,2-Dicloroetilene (trans)	µg/l	ļ	-	*	<0.05		
1,2-Dicloropropano	µg/l	<del> </del>	0.15	<0.1	<0.05 *	<0.1	<0.1
Diclorodifluoropropano 1,1,2-Tricloroetano	μg/l	ļ	0.2	<0.2 <0.1	<0.10	<0.2 <0.1	<0.2 <0.1
-i-i	μg/l	<del> </del>	0.2	<0.01	<0.10	<0.01	<0.11
1,2,3-Tricloropropano 1,1,2,2-Tetracloroetano	μg/l -/'	<del> </del>	0.001	<0.001	<0.05	<0.001	<0.001
1.1.1.2-Tetracloroetano	μg/l -/'	<del> </del>	-	<0.2	*	<0.2	<0.2
ALIFATICI ALOGENATI CANCEROGENI	μg/l		-	<b>V</b> 0.2		<b>~</b> 0.2	<b>~0.2</b>
Tribromometano	μg/l		0.3	<0.2	<0.3	<0.2	<0.2
Triclorofluorometano	μg/l		-	<0.2	*	<0.2	<0.2
1.2-Dibromoetano	μg/l		0.001	<0.001	<0.03	<0.001	<0.001
Dibromoclorometano	μg/l	·	0.13	<0.1	<0.10	<0.1	<0.1
Bromometano	μg/l		-	<0.2	*	<0.2	<0.2
lodometano	μg/l		-	<0.2	*	<0.2	<0.2
Bromodiclorometano	μg/l		0.17	<0.1	<0.10	<0.1	<0.1
Bromoclorometano	μg/l		-	<0.2	*	<0.2	<0.2
DIOSSINE - FURANI 2,3,7,8 CLOROSOSTITUITI							
PCDD SOSTITUITE IN 2,3,7,8							
2,3,7,8-tetracdd	ng/l	pg/l	-	<0.00050	<1.0	<0.00050	<0.00050
1,2,3,7,8-pentacdd	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,4,7,8-esacdd	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,6,7,8-esacdd	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,7,8,9-esacdd	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,4,6,7,8-eptacdd	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
Octacdd	ng/l	pg/l		<0.00050	<10.0	<0.00050	0.0053
PCDF SOSTITUITE IN 2,3,7,8				-0.00050	-4.0	-0.00050	-0.00050
2,3,7,8-tetracdf 1,2,3,7,8-pentacdf	ng/l	pg/l pg/l	-	<0.00050 <0.00050	<1.0 <5.0	<0.00050 <0.00050	<0.00050 <0.00050
2,3,4,7,8-pentacdf	ng/l	+		<0.00050	<5.0 <5.0	<0.00050	<0.00050
1,2,3,4,7,8-esacdf	ng/l ng/l	pg/l pg/l	<del> </del>	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,6,7,8-esacdf	ng/l	pg/l	<del> </del>	<0.00050	<5.0	<0.00050	<0.00050
2,3,4,6,7,8-esacdf	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,7,8,9-esacdf	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,4,6,7,8-eptacdf	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
1,2,3,4,7,8,9-eptacdf	ng/l	pg/l	-	<0.00050	<5.0	<0.00050	<0.00050
Octacdf	ng/l	pg/l	-	0.0348	<10.0	0.1280	0.0444
Equivalente di tossicità (i-teq)	ng/l	pg/l	0.004	0.0000348	*	0.0001280	0.0000497
PCB							
PCB totali	μg/l		0.01	*	<0.01	*	*
Aroclor 1254	μg/l		0.01	<0.01	*	<0.01	<0.01
Aroclor 1242	μg/I		0.01	<0.01	*	<0.01	<0.01
Aroclor 1260	μg/l		0.01	<0.01	*	<0.01	<0.01
Aroclor 1016	μg/l	ļ	0.01	<0.01	*	<0.01	<0.01
Aroclor 1248	μg/l	ļ	0.01	<0.01	*	<0.01	<0.01
Aroclor 1221	μg/l		0.01	<0.01	*	<0.01	<0.01
ALTRE SOSTANZE							
Idrocarburi totali (come n-esano)	μg/l	ļ	350	19	<20	25	25
Idrocarburi totali (come n-esano C6-C10)	µg/l	ļ	-	*	<100	*	*
Idrocarburi totali (come n-esano (C11 - C39)	μg/l	l	-	*	<100	*	*







Veneto Acque Spa / Fontaniva (PD)) 05.10.15 Atlante fotografico trincee 1 00 14





05.10.15 Atlante fotografico sondaggi 00 16

Repertorio fotografico 3 – Terebrazione sondaggi





Condotta di adduzione primaria DN 1200 – tratta 34 – ritrovamento di materiali di origine antropica - Comune di Fontaniva – Caratterizzazione ambientale ai sensi dell'art. 242 del D.Lgs. 152/2006 – Esiti delle indagini ambientali

Veneto Acque Spa / Fontaniva (PD)

903.15.24

00 17

05.10.15 Atlante fotografico_acque

# APPENDICE A Relazione di indagine storica Comune di Fontaniva (PD)













# COMUNE DI FONTANIVA

Provincia di Padova

#### SERVIZI TECNICI - VI^ UNITA' OPERATIVA

Edilizia privata, Urbanistica, Ambiente

PROCEDIMENTO: RELAZIONE.

Prot.gen.n° 1948 Data 16.02.2015

Piazza Umberto I°, 1
35014 Fontaniva – PD
Tel. 049 5949900 Fax. 049 5940040
Part.IVA 01545800284 Cod.Fisc. 81000430280
Sito internet <a href="http://www.comune.fontaniva.pd.it">http://www.comune.fontaniva.pd.it</a>
E-mail: <a href="mailto:amministrazione@comune.fontaniva.pd.it">amministrazione@comune.fontaniva.pd.it</a>
PEC: fontaniva.pd@cert.ip-veneto.net

**OGGETTO** 

Modello strutturale degli acquedotti del Veneto Centrale: posa della condotta di adduzione primaria DN 1200 – tratta 34 – Comune di Fontaniva (PD). Ritrovamento materiali di origine antropica.

Relazione di indagine storica.

#### Premessa.

I lavori di scavo relativi alla posa della condotta descritta in oggetto hanno rivelato una contaminazione storica con materiali di origine antropica, segnalata dall'impresa esecutrice con nota prot. n. 1158/14 del 03.03.2014.

L'area interessata, situata in via Delle Giare a Fontaniva (PD) e censita al Catasto al Foglio 11° - mappale n. 50 (all. 1), da visura catastale risulta di proprietà dei Sigg. Securo Giovanni e Pan Giuseppina.

Dalla sovrapposizione del rilievo aerofotogrammetrico dell'area interessata dalla contaminazione con il relativo estratto catastale, si desume che risulta interessata parzialmente anche un'area di proprietà della Provincia di Padova, corrispondente alla viabilità secondaria posta parallelamente alla ferrovia (all. 2).

Nel corso dell'incontro tenutosi in data 13.11.2014 tra tutti gli enti interessati, è stata concordata l'utilità di effettuare, a cura del Comune di Fontaniva, un'indagine con approfondimenti storici su circostanze e modalità di apporto dei materiali antropici in detto sito, allo scopo di poter fissare, per quanto possibile, le responsabilità sull'eventuale inquinamento.

segue (pag. 1 di 2)

giovedi 10.00-12.30

#### Indagine.

Sono state sentite diverse persone residenti in prossimità del sito in esame, la cui età consenta di ottenere informazioni attendibili in quanto verificate di persona. Emerge in maniera inequivocabile che, per un periodo di tempo di circa vent'anni dai primi anni sessanta all'inizio degli anni ottanta, si consolidò l'abitudine diffusa di portare e scaricare nel sito materiali di varia natura. A quel tempo l'area era una depressione, profonda circa quattro metri nel punto più basso, delimitata dai rilevati della ferrovia e dell'ex strada statale Postumia (poi declassata a strada provinciale) che portava al ponte sul fiume Brenta, crollato nel 1976. Viene riferito che arrivavano cittadini e ditte, anche da fuori comune, a scaricare i materiali più vari, generalmente di natura qualificabile come scarti di cantieri edili o resti di demolizioni, d'accordo con la proprietà che intendeva innalzare la quota del terreno al fine di ricavarvi della superficie coltivabile.

Il Sig. Securo Giovanni è divenuto proprietario dei citati mappali n. 50 e 171 in forza dell'atto di compravendita rep. n. 59031 Notaio dott. Braccio di Cittadella, stipulato in data 11.05.1983, terreno cedutogli dai Sigg. Bodo Filippo e Lago Giovanni, entrambi di Fontaniva.

In tale atto (all. n. 3) si riscontra che il terreno, alla data della stipula cioè il 11.05.1983, era adibito a discarica. Riferisce infatti il proprietario Sig. Securo che quando l'ha acquistato il riempimento della buca con materiali vari era già avvenuto, con il consenso del precedente proprietario.

Dopo l'acquisto qualcuno arrivava ancora a scaricare qualcosa per cui si rivolse all'ufficio dei Vigili Urbani del comune i quali fecero alcuni sopralluoghi ma non riuscirono mai ad intecettare qualcuno che scaricava nel sito qualche rifiuto. I Vigili allora suggerirono al Sig. Securo di recintare il sito, provvisoriamente e con materiali facilmente amovibili (rete sostenuta da pali conficcati nel terreno), fino a quando non avesse sistemato l'area ricoprendo il tutto con terreno vegetale.

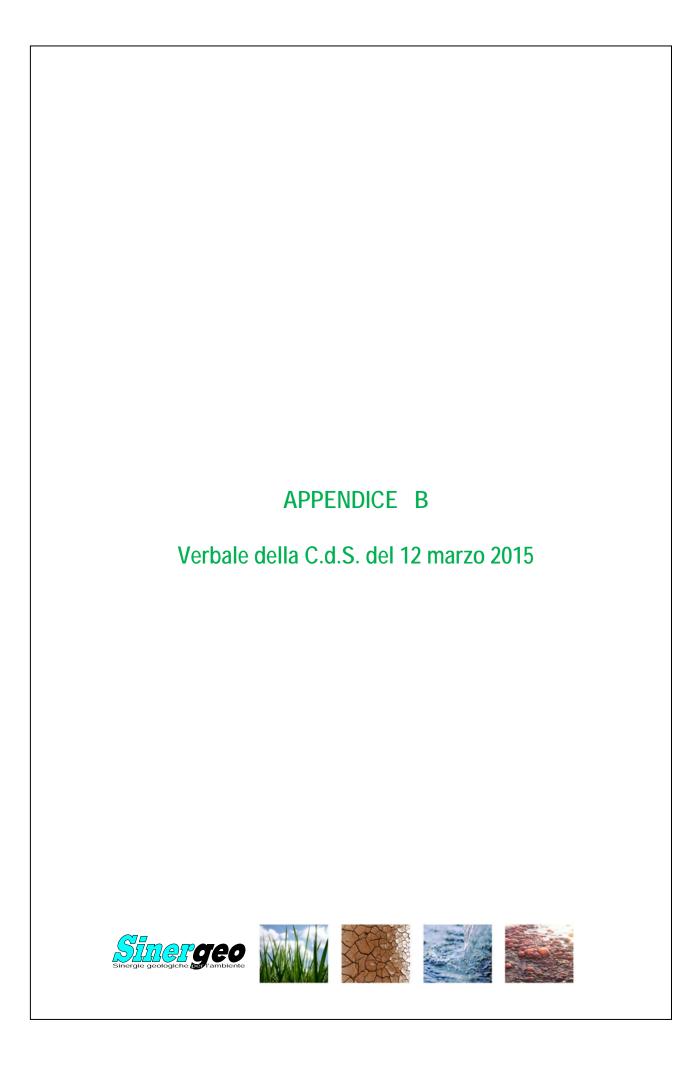
Così fece, pose la recinzione, ricoprì la discarica con terreno vegetale che coltivò in seguito ponendo a dimora alberi da frutto e un po' di orto.

Il Sig. Securo riferisce di aver posato la recinzione consapevolmente inglobando anche un'area che non è di sua proprietà (per l'appunto l'area ora di proprietà della Provincia di Padova) in quanto lo scopo era quello di impedire l'ulteriore scarico di rifiuti; proprio per tale motivo la rete venne posata dove si trova tutt'ora, cioè a margine della viabilità esistente.

Le testimonianze raccolte, sono univoche nell'escludere l'avvenuto scarico di materiali e sostanze inquinanti e/o velenose, trattandosi generalmente di rifiuti inerti derivanti da attività e cantieri edili.

IL RESPONSABILE DEL SERVIZIO geom. Giarcarlo Bergamin

Fine (pag. 2 di 2)


Adempimenti ex. artt. 4 e 5 Legge 241/90 -

Struttura: VI^ U.O. Servizio Edilizia Privata e Urbanistica, Ambiente

Responsabile del Servizio : geom. Giancarlo Bergamin Responsabile del Procedimento : geom. Giancarlo Bergamin Per informazioni : d.ssa Susanna Bragagnolo Tel. 049-5949921 -- Telefax. 049-5949940 -- ediliziaurbanistica@comune.fontaniva.pd.it

Orario di apertura al pubblico : lunedi ore 10.00-12.30 (solo professionisti)

martedì 17.00-19.00 giovedi 10.00-12.30





Provincia di Padova

SERVIZI TECNICI - VI^ UNITA' OPERATIVA Edilizia privata, Urbanistica, Ambiente

PROCEDIMENTO: CONFERENZA DEI SERVIZI

Prot.gen.n°	2257	Data
		12/03/2015

Piazza Umberto I°, 1 35014 Fontaniva – PD Tel. 049 5949900 Fax. 049 5940040 Part.IVA 0154580028 Cod.Fisc. 81000430280 Sito internet <a href="http://www.comune.fontaniva.pd.it">http://www.comune.fontaniva.pd.it</a> E-mail: amministrazione@comune.fontaniva.pd.it

**OGGETTO** 

VERBALE CONFERENZA DEI SERVIZI RELATIVA AL RITROVAMENTO MATERIALI DI ORIGINE ANTROPICA NELL'AMBITO DEI LAVORI DI POSA CONDOTTA ADDUZIONE PRIMARIA – TRATTA 34 – COMUNE DI FONTANIVA DEL MOSAV...

Alle ore 10,00 del giorno 12 marzo 2015, presso la sede della Provincia di Padova, in Piazza Bardella n. 3 a Padova, terza torre, sala riunioni del Settore Ambiente situata al terzo piano, si tiene la Conferenza dei Servizi di cui all'art. 14 e seguenti della Legge 07/08/1990 n. 241 e successive modifiche ed integrazioni, convocata dal responsabile del procedimento, Geom. Bergamin Giancarlo, con nota prot. n. 1810 del 25.02.2015.

# Sono stati invitati:

- PROVINCIA DI PADOVA Presidente
- PROVINCIA DI PADOVA Settore Ambiente
- A.R.P.A.V. Dipartimento Provinciale di Padova
- REGIONE VENETO Segreteria Regionale per l'Ambiente
- Ditta VENETO ACQUE S.p.A.
- COMUNE DI FONTANIVA Sindaco
- Sig. SECURO GIOVANNI
- Sig.ra PAN GIUSEPPINA

# Alla Conferenza dei Servizi sono presenti:

- PROVINCIA DI PADOVA Settore Ambiente p.i. ZARPELLON PAOLO (DELEGA PROT. N. 34265 DEL 11.03.2015)
- A.R.P.A.V. Dipartimento Provinciale di Padova dott. SCHIONA ANDREA (delega PROT. N. 24561 DEL 11.03.2015)
- Ditta VENETO ACQUE S.p.A. ing. Dall'ASTA PAOLO direttore lavori acquedotto e ing. TREVISAN FRANCESCO (delega prot. n. 195 del 12.03.2015)
- COMUNE DI FONTANIVA Sindaco dott. Piotto Lorenzo

Espleta la funzione di verbalizzante il Geom. Giancarlo Bergamin.

L

segue (pag. 1 di 4)

# I convenuti,

# premesso che:

- nel mese di marzo 2014 l'impresa Vittadello S.p.A., esecutrice dei lavori di posa dell'acquedotto citato in oggetto (ora cessata), durante le operazioni di scavo ha rinvenuto dei materiali di origine antropica nel sottosuolo del terreno sito a Fontaniva (PD) in via Delle Giare, censito al N.C.T.: Sezione Unica foglio 11° mappale n. 50. L'impresa, con nota prot. n. 1158 del 03.03.2014 segnalò la contaminazione storica a tutti gli enti interessati, provvedette a mettere in sicurezza il sito e successivamente fece eseguire un'indagine preliminare per la determinazione di eventuali superamenti del livello delle concentrazioni soglia di contaminazione;
- in data 07.08.2014 si è tenuto un primo incontro tecnico durante il quale sono stati esaminati gli esiti delle analisi esperite e concordato di eseguire indagini più approfondite ed estese allo scopo di definire il volume occupato dai materiali antropici, oltrechè indagare ulteriormente le caratteristiche dei materiali effettuando altri prelievi. In quella sede venne incaricata la Ditta Veneto Acque S.p.A. di predisporre una proposta di piano di indagine da sottoporre poi alla valutazione degli enti coinvolti;
- Ia Ditta Veneto Acque ha provveduto a redigere la proposta di piano di indagine datata 23.09.2014;
- in data 13.11.2014 si è tenuto un secondo incontro tecnico nel corso del quale si convenne la necessità di effettuare, a cura del Comune di Fontaniva, un'indagine con approfondimenti storici su circostanze e modalità di apporto dei materiali antropici nel sito, mentre si affidò a Veneto Acque S.p.a. il compito di integrare la proposta di piano di indagine del 23.09.2014 con la previsione di piezometri per il controllo della qualità dell'acqua di falda a monte e a valle del sito;
- la Ditta Veneto Acque S.p.A ha provveduto a redigere la proposta di piano di indagine prot. n. 689/14 datata 09.12.2014, trasmessa agli invitati in allegato alla convocazione della conferenza;
- il Comune di Fontaniva ha provveduto a redigere la relazione di indagine storica prot. n. 1948 del 16.02.2015, trasmessa agli invitati in allegato alla convocazione della conferenza;
- il responsabile del procedimento, con nota prot. n. 1810 del 25.02.2015, ha convocato la Conferenza dei Servizi secondo quanto disposto dall'art. 14 e seguenti della Legge 07/08/1990 n. 241 e successive modifiche ed integrazioni, al fine di valutare nel complesso la problematica descritta;
- la relazione di indagine storica ed il piano di indagine costituiscono di fatto piano di caratterizzazione ai sensi dell'art. 242 del D.Lgs. n. 152/2006 e come tale può essere valutato ai sensi del medesimo articolo nella odierna conferenza;

# sentiti gli interventi:

• del p.i. Zarpellon Paolo, rappresentante della Provincia di Padova, il quale evidenzia che in sede si esprime sugli aspetti ambientali per l'intervento in oggetto, ai sensi dell'art. 242 del

segue (pag. 2 di 4)

11.

D.Lgs. n. 152/2006. Condivide il piano di indagine presentato e propone di integrarlo prevedendo analisi atte a verificare le caratteristiche di materiali che hanno cessato la qualifica di rifiuto (ex MPS) sui materiali terrosi che dovessero presentare un contenuto di sostanze estranee superiore al 20 %;

- del dott. Schiona Andrea, rappresentante di ARPAV, in quale chiede che al momento del campionamento delle acque sotterranee venga rilevata la direzione della falda;
- dell'ing. Trevisan Francesco di Veneto Acque Spa il quale condivide quanto espresso da Provincia di Padova e Arpav e propone, al fine di meglio valutare la direzione di falda, di collocare il piezometro Pz3 a nord della Ferrovia;

# convengono:

all'unanimità dei presenti di approvare il piano di caratterizzazione, così come presentato, con le seguenti prescrizioni:

- 1. i lavori dovranno iniziare entro 60 giorni dalla data di approvazione da parte del Comune del Piano presentato;
- 2. la Ditta dovrà comunicare preventivamente a Comune, Provincia ed A.R.P.A.V., il nominativo del tecnico responsabile dell'intervento nonché il cronoprogramma effettivo dei lavori;
- 3. la Ditta dovrà concordare con A.R.P.A.V. le date di effettuazione dei campionamenti, secondo le indicazioni della D.G.R.V. 2922/03, e comunicarle a Comune e Provincia anche a mezzo fax con anticipo di almeno 5 giorni lavorativi;
- 4. i campionamenti e le analisi dovranno essere effettuati secondo le indicazioni dell'allegato 2 del Titolo V del D.Lgs. 152/06.e della DGRV 2922/03. Le analisi dovranno essere realizzate da laboratorio accreditato;
- 5. dovrà essere posta la massima attenzione per evitare eventuali fenomeni di cross contamination nella realizzazione dei piezometri;
- 6. non sostanziali modifiche operative in corso d'opera, potranno essere concordate direttamente con ARPAV. Le risultanze verranno trasmesse tempestivamente a Comune e Provincia a cura della Ditta;
- 7. la sensibilità analitica dei metodi adottati per l'analisi del terreno dovrà essere almeno 1/10 dei valori di colonna A, ove analiticamente possibile;
- 8. il piezometro Pz 3 dovrà essere realizzato in maniera tale da risultare più significativo ai fini della direzione della falda e posto a nord della ferrovia;
- 9. Dovranno essere effettuate analisi atte a verificare le caratteristiche di materiali che hanno cessato la qualifica di rifiuto (Ex MPS) sui materiali terrosi che dovessero presentare un contenuto di sostanze estranee superiore al 20 %.
- 10. i risultati delle attività di campo e di laboratorio dovranno essere espressi sotto forma di tabelle di sintesi e di rappresentazioni cartografiche, inclusa un'accurata restituzione stratigrafica dell'area, comprendenti la documentazione fotografica dei sondaggi, la mappa con indicazione delle indagini svolte e dei punti di campionamento, la mappa di distribuzione orizzontale e verticale degli eventuali inquinanti. Dovrà essere presentato anche un rilievo planoaltimetrico quotato e definiti i livelli di escursione della falda. Dovranno essere specificati i parametri idrogeologici sitospecifici;
- 11. le attività a campo saranno descritte a cura del responsabile dell'intervento in apposito giornale dei lavori da compilare giornalmente;
- 12. qualora le indagini evidenziassero concentrazioni oltre le C.S.C., tali da poter richiedere un'analisi di rischio, potranno essere disposti, in accordo con le PP.AA., ulteriori accertamenti al fine di raccogliere tutti i dati sitospecifici necessari;

Letto, confermato e sottoscritto.

PROVINCIA DI PADOVA – Settore Ambiente P.I. Zarpellon Paolo

A.R.P.A.V. – Dipartimento Provinciale di Padova dott. Schiona Andrea

Ocoline A.L. A. L. A

Ditta VENETO ACQUE S.p.A.

Ing. Dall'Asta Paolo

Ditta VENETO ACQUE S.p.A. Ing. Trevisan Francesco

COMUNE DI FONTANIVA – Sindaco Dott. Lorenzo Piotto

Responsabile del Procedimento e verbalizzante Geom. Giancarlo Bergamin









**LAB Nº 0266** 

analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

**RAPPORTO DI PROVA N° 112027**Data di emissione: 29 luglio 2015

D-- 1/4

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24

Denominazione campione: T1/A - riporto - 903.15.24

Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: 01612_10
Data campionam. / accettaz.*: 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

# **RISULTATI ANALITICI**

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	5,4	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	3,7	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	11,4	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	10,4	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	17,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Rame	mg/kg ss	16,6	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	110	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	54,1	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	16	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Via delle Giare

Spett.: Veneto Acque Spa

FONTANIVA PD

RAPPORTO DI PROVA N° 112027

Data di emissione: 29 luglio 2015

Pag. 2/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
ndeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	<0,01	5	
ommatoria policiclici aromatici (da 25 34)	mg/Kg ss	<1,0	10	
РСВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,014	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Via delle Giare

Spett.: Veneto Acque Spa

FONTANIVA PD

RAPPORTO DI PROVA N° 112027

Data di emissione: 29 luglio 2015

Pag. 3/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	=	
Residuo secco a 105 °C	%	87,4	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	67	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	33	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002
Dibenzodiossine/Furani policlorurati (PCDD/PCDF)¤				EPA 1613B 1994
2,3,7,8 – TCDD ¤	μg/kg ss	<0,0002	-	
1,2,3,7,8 - PCDD¤	μg/kg ss	<0,0002	-	
1,2,3,4,7,8 – HxCDD ¤	μg/kg ss	<0,0002	-	
1,2,3,6,7,8 − HxCDD ¤	μg/kg ss	0,0009	-	
1,2,3,7,8,9 − HxCDD ¤	μg/kg ss	0,0002	=	
1,2,3,4,6,7,8 − HpCDD ¤	μg/kg ss	0,0174	-	
OCDD ¤	μg/kg ss	0,114	-	
2,3,7,8 – TCDF ¤	μg/kg ss	0,0169	-	
1,2,3,7,8 – PCDF ¤	μg/kg ss	0,0014	-	
2,3,4,7,8 – PCDF ¤	μg/kg ss	0,00174	-	
1,2,3,4,7,8 – HxCDF ¤	μg/kg ss	0,00224	-	
1,2,3,6,7,8 – HxCDF ¤	μg/kg ss	0,00189	-	
2,3,4,6,7,8 – HxCDF ¤	μg/kg ss	0,00151	-	
1,2,3,7,8,9 – HxCDF ¤	μg/kg ss	0,00032	-	
1,2,3,4,6,7,8 – HpCDF ¤	μg/kg ss	0,008969	-	
1,2,3,4,7,8,9 – HpCDF ¤	μg/kg ss	0,00085	-	







Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112027

Data di emissione:

29 luglio 2015

Pag. 4/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
OCDF ¤	μg/kg ss	0,0211	-	
Tossicità equivalente secondo (i-teq) ¤	mg/kg ss	0,0000017	0,00001	

[¤] Prova effettuata presso laboratorio esterno numero ACCREDIA 0051

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

Documento firmato in digitale

^{*} Prova non accreditata da ACCREDIA

⁽¹⁾ Materiale di riferimento: Unleaded Gasoline (Unweathered)

⁽²⁾ Materiale di riferimento: Diesel Fuel (Unweathered)

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione. Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







**LAB Nº 0266** 

analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112028

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T2/A - riporto
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche:
Codice campionem. / accettaz. #:
Data campionam. / accettaz. #:
Data inizio prove:
Data fine prove:
06/07/2015

# **RISULTATI ANALITICI**

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	4,3	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	3,1	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	13,5	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	9,8	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	23,8	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Rame	mg/kg ss	16,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	12,0	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	51,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	60	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112028

Data di emissione: 29 luglio 2015

Pag. 2/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	0,13	-	
Antracene	mg/Kg ss	0,05	-	
Fluorantene	mg/Kg ss	0,27	-	
Benzo(e)pirene	mg/Kg ss	0,08	-	
Perilene	mg/Kg ss	0,03	-	
Benzo(a)antracene (25)	mg/Kg ss	0,13	0,5	
Benzo(a)pirene (26)	mg/Kg ss	0,13	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	0,11	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	0,09	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	0,13	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	0,11	0,1	
Pirene (37)	mg/Kg ss	0,18	5	
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,038	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







**LAB Nº 0266** 

analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N° 112028

Data di emissione:

29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	=	
Residuo secco a 105 °C	%	79,8	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	62	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	38	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

# Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

Documento firmato in digitale

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







**LAB Nº 0266** 

analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

**RAPPORTO DI PROVA N° 112029**Data di emissione: 29 luglio 2015

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24

Denominazione campione: T3/A - riporto - 903.15.24

Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: 01612_14
Data campionam. / accettaz.": 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

# **RISULTATI ANALITICI**

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DN 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	5,8	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/200 GU n° 84 10/04/2002
Cobalto	mg/kg ss	3,5	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/200 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	9,4	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/20 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	9,2	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/200 GU n° 84 10/04/2002
Piombo	mg/kg ss	15,3	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/20 GU n° 84 10/04/2002
Rame	mg/kg ss	25,9	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/20 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	12,1	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	61,9	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/200 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	8	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112029

Data di emissione: 29 luglio 2015

Pag. 2/4

			Limiti Tab.1/A	
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova
			del D.Lgs.152/06	
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	0,01	0,1	
Pirene (37)	mg/Kg ss	0,01	5	
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,014	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Via delle Giare

Spett.: Veneto Acque Spa

FONTANIVA PD

RAPPORTO DI PROVA N° 112029

Data di emissione: 29 luglio 2015

Pag. 3/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	92,4	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	68	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	32	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002
Dibenzodiossine/Furani policlorurati (PCDD/PCDF)¤				EPA 1613B 1994
2,3,7,8 – TCDD ¤	μg/kg ss	<0,0002	-	
1,2,3,7,8 – PCDD ¤	μg/kg ss	0,00566	-	
1,2,3,4,7,8 – HxCDD ¤	μg/kg ss	0,0047	-	
1,2,3,6,7,8 – HxCDD ¤	μg/kg ss	0,01354	-	
1,2,3,7,8,9 – HxCDD ¤	μg/kg ss	0,00838	-	
1,2,3,4,6,7,8 − HpCDD ¤	μg/kg ss	0,115	-	
OCDD ¤	μg/kg ss	0,772	-	
2,3,7,8 – TCDF ¤	μg/kg ss	0,0309	-	
1,2,3,7,8 − PCDF ¤	μg/kg ss	0,0268	-	
2,3,4,7,8 – PCDF ¤	μg/kg ss	0,0441	-	
1,2,3,4,7,8 - HxCDF ¤	μg/kg ss	0,0448	-	
1,2,3,6,7,8 – HxCDF ¤	μg/kg ss	0,0464	-	
2,3,4,6,7,8 – HxCDF ¤	μg/kg ss	0,0603	-	
1,2,3,7,8,9 – HxCDF ¤	μg/kg ss	0,00214	-	
1,2,3,4,6,7,8 – HpCDF ¤	μg/kg ss	0,1987	-	
1,2,3,4,7,8,9 – HpCDF ¤	μg/kg ss	0,0167	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112029

Data di emissione:

29 luglio 2015

Pag. 4/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
OCDF ¤	μg/kg ss	0,50779	-	
Tossicità equivalente secondo (i-teq) ¤	mg/kg ss	0,0000445	0,00001	

[¤] Prova effettuata presso laboratorio esterno numero ACCREDIA 0051

### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A Documento firmato in digitale

^{*} Prova non accreditata da ACCREDIA

⁽¹⁾ Materiale di riferimento: Unleaded Gasoline (Unweathered)

⁽²⁾ Materiale di riferimento: Diesel Fuel (Unweathered)

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione. Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112030

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T4/A - riporto
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campionem: O1612_16
Data campionam. / accettaz.#: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	5,5	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	3,2	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	22,2	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	17,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	17,7	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	25,3	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	8,8	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	55,6	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	26	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	0,03	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112030

Data di emissione: 29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	0,05	-	
Antracene	mg/Kg ss	0,02	-	
Fluorantene	mg/Kg ss	0,04	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	0,03	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	0,03	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	0,03	5	
Sommatoria policiclici aromatici (da 25 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,029	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI	J. J	-	•	EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112030

Data di emissione:

29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	86,2	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	61	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	39	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)

# Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione. Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

**RAPPORTO DI PROVA N° 112031**Data di emissione: 29 luglio 2015

Pag. 1/3

INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T5/A - riporto
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche:
Codice campionene:
Data campionam. / accettaz. #:
Data inizio prove:
Data fine prove:

Caratteristiche fisiche:
Solido
O1612_17
19/06/2015
19/06/2015
Data fine prove:
06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	7,0	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	4,4	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	18,9	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	15,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	37,8	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	33,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	11,9	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	102	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	11	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112031

Data di emissione: 29 luglio 2015

			Limiti Tab.1/A	
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova
	4.:		del D.Lgs.152/06	
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	0,01	-	
Antracene	mg/Kg ss	0,01	-	
Fluorantene	mg/Kg ss	0,03	-	
Benzo(e)pirene	mg/Kg ss	0,02	-	
Perilene	mg/Kg ss	0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	0,02	0,5	
Benzo(a)pirene (26)	mg/Kg ss	0,03	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	0,03	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	0,02	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	0,02	0,1	
Crisene (30)	mg/Kg ss	0,02	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,I)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	0,03	0,1	
Pirene (37)	mg/Kg ss	0,03	5	
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,059	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112031

Data di emissione:

29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	85,5	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	62	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	38	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112032

Data di emissione: 29 luglio 2015

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa

Luogo di produzione: 903.15.24

Denominazione campione: T6/A - riporto - 903.15.24

Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: 01612_18
Data campionam. / accettaz.*: 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	9,2	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	5,6	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	14,2	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	12,5	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	111	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	55,9	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	14,2	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	103	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	34	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Via delle Giare

Spett.: Veneto Acque Spa

FONTANIVA PD

RAPPORTO DI PROVA N° 112032

Data di emissione: 29 luglio 2015

			Limiti Tab.1/A	
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova
	4.:		del D.Lgs.152/06	
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,I)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	<0,01	5	
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,069	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112032

Data di emissione:

Pag. 3/4

29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	85,4	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				30 11 34 10/04/2002
Frazione < 2 mm	%	79	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	21	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002
Dibenzodiossine/Furani policlorurati (PCDD/PCDF)¤				EPA 1613B 1994
2,3,7,8 – TCDD ¤	μg/kg ss	<0,0002	-	
1,2,3,7,8 – PCDD ¤	μg/kg ss	0,00054	-	
1,2,3,4,7,8 – HxCDD ¤	μg/kg ss	0,00061	-	
1,2,3,6,7,8 – HxCDD ¤	μg/kg ss	0,001	-	
1,2,3,7,8,9 – HxCDD ¤	μg/kg ss	0,00089	-	
1,2,3,4,6,7,8 – HpCDD ¤	μg/kg ss	0,0157	-	
OCDD ¤	μg/kg ss	0,0980	-	
2,3,7,8 – TCDF ¤	μg/kg ss	0,00258	-	
1,2,3,7,8 – PCDF ¤	μg/kg ss	0,00271	-	
2,3,4,7,8 – PCDF ¤	μg/kg ss	0,004255	-	
1,2,3,4,7,8 – HxCDF ¤	μg/kg ss	0,00527	-	
1,2,3,6,7,8 – HxCDF ¤	μg/kg ss	0,00425	-	
2,3,4,6,7,8 – HxCDF ¤	μg/kg ss	0,00462	-	
1,2,3,7,8,9 – HxCDF ¤	μg/kg ss	<0,0002	-	
1,2,3,4,6,7,8 – HpCDF ¤	μg/kg ss	0,0246	-	
1,2,3,4,7,8,9 – HpCDF ¤	μg/kg ss	0,00287	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112032

Data di emissione:

29 luglio 2015

Pag. 4/4

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
OCDF ¤	μg/kg ss	0,0361	-	
Tossicità equivalente secondo (i-teq) ¤	mg/kg ss	0,0000043	0,00001	

[¤] Prova effettuata presso laboratorio esterno numero ACCREDIA 0051

### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

^{*} Prova non accreditata da ACCREDIA

⁽¹⁾ Materiale di riferimento: Unleaded Gasoline (Unweathered)

⁽²⁾ Materiale di riferimento: Diesel Fuel (Unweathered)

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione. Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112033

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T7/A - riporto
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche:
Codice campionen:
Data campionam. / accettaz. #:
Data inizio prove:
Data fine prove:
Data fine prove:
Dod/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	9,2	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	4,2	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	14,2	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	11,3	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	27,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	33,8	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	15,5	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	81,6	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	128	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112033

Data di emissione: 29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	0,06	-	
Benzo(e)pirene	mg/Kg ss	0,02	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	0,02	0,5	
Benzo(a)pirene (26)	mg/Kg ss	0,04	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	0,03	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	0,02	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	0,03	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	0,04	5	
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10	
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	=	
Aroclor 1254	mg/Kg ss	<0,006	=	
Aroclor 1260	mg/Kg ss	0,120	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Via delle Giare

Spett.: Veneto Acque Spa

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112033

Data di emissione:

29 luglio 2015

Pag. 3/3

			Limiti Tab.1/A		
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova	
			del D.Lgs.152/06		
1,2-Dicloroetano	mg/kg ss	<0,02	0,2		
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1		
Tricloroetilene	mg/kg ss	<0,02	1		
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5		
ALIFATICI CLORURATI NON				EPA 5021A 2003 + EPA 8260C 2006	
CANCEROGENI				EFA 3021A 2003 1 EFA 6200C 2000	
1,1-Dicloroetano	mg/kg ss	<0,05	0,5		
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3		
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5		
1,2-Dicloropropano	mg/kg ss	<0,05	0,3		
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5		
1,2,3-Tricloropropano	mg/kg ss	<0,05	1		
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5		
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006	
Cloroetano	mg/Kg ss	<0,05	-		
Tetracloruro di carbonio	mg/Kg ss	<0,05	-		
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-		
Residuo secco a 105 °C	%	83,0	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002	
SCHELETRO				• •	
Frazione < 2 mm	%	67	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002	
Frazione compresa tra 2 mm e 2 cm	%	33	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002	

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(f) Materiale di riferimento: Diesel Fuel (Unweathered)
(f) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(f) Materiale (Unwea Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112034
Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: C - riporto
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: 01612_22
Data campionam. / accettaz. 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DN 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	6,3	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	3,4	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	9,5	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	9,1	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	11,4	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	13,5	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	7,9	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	35,7	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	11	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112034

Data di emissione: 29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	0,02	-	
Antracene	mg/Kg ss	0,01	-	
Fluorantene	mg/Kg ss	0,06	-	
Benzo(e)pirene	mg/Kg ss	0,03	-	
Perilene	mg/Kg ss	0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	0,04	0,5	
Benzo(a)pirene (26)	mg/Kg ss	0,04	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	0,04	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	0,03	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	0,04	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
ndeno(1,2,3-cd)pirene (36)	mg/Kg ss	0,04	0,1	
rirene (37)	mg/Kg ss	0,05	5	
ommatoria policiclici aromatici (da 25 34)	mg/Kg ss	<1,0	10	
РСВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2003
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	0,006	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

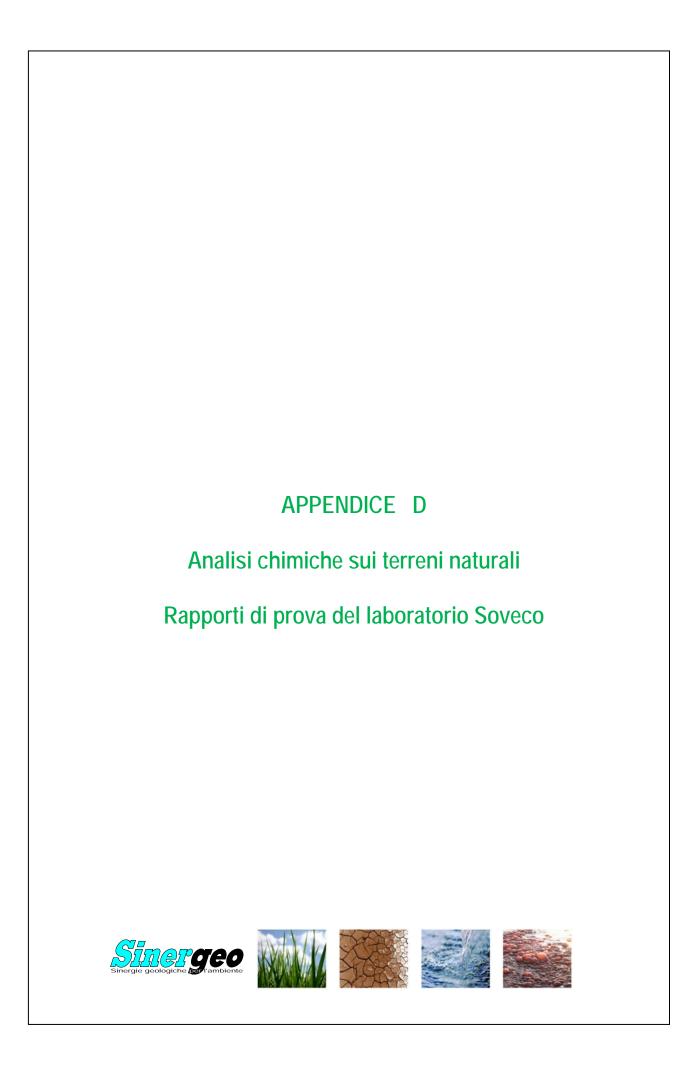
Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N° 112034

Data di emissione: 29 luglio 2015

Pag. 3/3


Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	89,4	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	61	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	39	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112035

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T1/B - naturale
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: O1612_11
Data campionam. / accettaz. *: 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DN 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	<2,0	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	<2,0	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	<5,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	<5,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Rame	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	<5,0	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	8,9	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	<5	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112035

29 luglio 2015 Data di emissione:

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV	Metodo di prova
			del D.Lgs.152/06	<u>-</u>
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
ndeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
irene (37)	mg/Kg ss	<0,01	5	
Sommatoria policiclici aromatici (da 25	ma/Va.cc	<1,0	10	
34)	mg/Kg ss	<1,0	10	
СВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	<0,006	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112035

Data di emissione:

29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	96,3	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	40	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	60	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽¹⁾ Materiale di riferimento: Unleaded Gasoline (Unweathered)
(2) Materiale di riferimento: Diesel Fuel (Unweathered)

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione. Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







Via delle Giare

Spett.: Veneto Acque Spa

FONTANIVA PD

RAPPORTO DI PROVA N° 112036

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T2/B - naturale
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: O1612_13
Data campionam. / accettaz. #: 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	2,5	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	<2,0	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	<5,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	5,4	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Rame	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	<5,0	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	16,9	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	<5	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112036

Data di emissione: 29 luglio 2015

arametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	<0,01	5	
Sommatoria policiclici aromatici (da 25 34)	mg/Kg ss	<1,0	10	
РСВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	<0,006	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N°

112036

Data di emissione:

29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	94,3	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	64	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	36	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

**RAPPORTO DI PROVA N° 112037**Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T3/B - naturale
Campione prelevato da: Tecnico Sinergeo
Caratteristiche fisiche: Solido

Caratteristiche fisiche:
Codice campionem. / accettaz. #:
Data campionam. / accettaz. #:
Data fine prove:
Data fine prove:
Caratteristiche fisiche:
Solido
O1612_15
19/06/2015
19/06/2015
06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	2,7	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	<2,0	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	<5,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	5,2	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	5,3	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	22,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	<5	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112037

Data di emissione: 29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
Fenantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
Crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
Pirene (37)	mg/Kg ss	<0,01	5	
ommatoria policiclici aromatici (da 25 34)	mg/Kg ss	<1,0	10	
РСВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
Aroclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
Aroclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
Aroclor 1260	mg/Kg ss	<0,006	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Tribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
Cloruro di vinile	mg/Kg ss	<0,005	0,01	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

RAPPORTO DI PROVA N° 112037

29 luglio 2015 Data di emissione:

Pag. 3/3

			Limiti Tab.1/A	
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	del D.Lgs.152/06 0,2	
•		•	•	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON				EPA 5021A 2003 + EPA 8260C 2006
CANCEROGENI				E///3021/12005
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	96,3	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/200 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	74	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/200 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	26	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/200 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112038

Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24
Denominazione campione: T6/B - naturale
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche:
Codice campionen:
Data campionam. / accettaz. 19/06/2015
Data fine prove:
Data fine

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DM 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	2,4	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	<2,0	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	<5,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	<5,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Rame	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	<5,0	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	13,1	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(¹)	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ^(²)	mg/Kg ss	<5	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112038

Data di emissione: 29 luglio 2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	mg/Kg ss	<0,01	-	
Fluorene	mg/Kg ss	<0,01	-	
- enantrene	mg/Kg ss	<0,01	-	
Antracene	mg/Kg ss	<0,01	-	
Fluorantene	mg/Kg ss	<0,01	-	
Benzo(e)pirene	mg/Kg ss	<0,01	-	
Perilene	mg/Kg ss	<0,01	-	
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5	
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1	
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5	
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5	
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1	
crisene (30)	mg/Kg ss	<0,01	5	
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,l)pirene (32)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1	
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1	
ndeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1	
irene (37)	mg/Kg ss	<0,01	5	
ommatoria policiclici aromatici (da 25 4)	mg/Kg ss	<1,0	10	
СВ	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007
Aroclor 1016	mg/Kg ss	<0,006	-	
roclor 1221	mg/Kg ss	<0,006	-	
Aroclor 1242	mg/Kg ss	<0,006	-	
roclor 1248	mg/Kg ss	<0,006	-	
Aroclor 1254	mg/Kg ss	<0,006	-	
aroclor 1260	mg/Kg ss	<0,006	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2000
- ribromometano	mg/kg ss	<0,05	0,5	
1,2-Dibromoetano	mg/kg ss	<0,005	0,01	
Dibromoclorometano	mg/kg ss	<0,05	0,5	
Bromodiclorometano	mg/kg ss	<0,05	0,5	
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
Clorometano	mg/Kg ss	<0,02	0,1	
Diclorometano	mg/kg ss	<0,02	0,1	
Triclorometano	mg/Kg ss	<0,02	0,1	
loruro di vinile	mg/Kg ss	<0,005	0,01	







Via delle Giare

Spett.: Veneto Acque Spa

**FONTANIVA PD** 

RAPPORTO DI PROVA N° 112038

Data di emissione: 29 luglio 2015

Pag. 3/3

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	del D.Lgs.152/06 0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
•		•	•	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
	ma/ka ss	<0.0F	0.5	
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	87,8	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	25	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	75	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112039
Data di emissione: 29 luglio 2015

Pag. 1/3

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa
Luogo di produzione: 903.15.24

Denominazione campione: T7/B - naturale
Campione prelevato da: Tecnico Sinergeo

Caratteristiche fisiche: Solido
Codice campione: 01612_21
Data campionam. / accettaz. #: 19/06/2015
Data inizio prove: 19/06/2015
Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	mg/kg ss	<10,0	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met. IV.2 DN 25/03/2002 GU n° 84 10/04/2002
Cianuri liberi	mg/kg ss	<0,1	1	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	mg/Kg ss	<0,2	2	EPA 3060A 1996 + EPA 7196A 1992
Antimonio	mg/kg ss	<2,0	10	EPA 3050B 1996 + EPA 6010C 2007
Arsenico	mg/kg ss	2,4	20	EPA 3050B 1996 + EPA 6010C 2007
Berillio	mg/kg ss	<0,5	2	EPA 3050B 1996 + EPA 6010C 2007
Cadmio	mg/kg ss	<0,4	2	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cobalto	mg/kg ss	<2,0	20	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Cromo totale	mg/kg ss	<5,0	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Mercurio	mg/kg ss	<0,5	1	EPA 7471B 2007*
Nichel	mg/kg ss	<5,0	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Piombo	mg/kg ss	5,3	100	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2007 GU n° 84 10/04/2002
Rame	mg/kg ss	6,7	120	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
Selenio	mg/kg ss	<1,2	3	EPA 3050B 1996 + EPA 6010C 2007
Tallio	mg/kg ss	<0,5	1	EPA 3050B 1996 + EPA 6010C 2007
Vanadio	mg/kg ss	<5,0	90	EPA 3050B 1996 + EPA 6010C 2007
Zinco	mg/kg ss	20,2	150	DM 13/09/1999 SO GU n° 248 21/10/1999 Met XI.1 DM 25/03/2002 GU n° 84 10/04/2002
IDROCARBURI				
Idrocarburi leggeri C<12 ^(')	mg/Kg ss	<2	10	EPA 5021A 2003 + EPA 8015D 2003
Idrocarburi pesanti C>12 ⁽²⁾	mg/Kg ss	<5	50	EPA 3550C 2007 + EPA 8015D 2003
IPA				EPA 3550 C 2007 + EPA 8270 D 2007
Naftalene	mg/Kg ss	<0,01	-	
Acenaftilene	mg/Kg ss	<0,01	-	







Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA PD

RAPPORTO DI PROVA N° 112039

Data di emissione: 29 luglio 2015

			Limiti Tab.1/A		
Parametro	U.M.	Risultato	all. 5 parte IV	Metodo di prova	
			del D.Lgs.152/06		
Acenaftene	mg/Kg ss	<0,01	-		
Fluorene	mg/Kg ss	<0,01	-		
Fenantrene	mg/Kg ss	<0,01	-		
Antracene	mg/Kg ss	<0,01	-		
Fluorantene	mg/Kg ss	<0,01	-		
Benzo(e)pirene	mg/Kg ss	<0,01	-		
Perilene	mg/Kg ss	<0,01	-		
Benzo(a)antracene (25)	mg/Kg ss	<0,01	0,5		
Benzo(a)pirene (26)	mg/Kg ss	<0,01	0,1		
Benzo(b)fluorantene (27)	mg/Kg ss	<0,01	0,5		
Benzo(k)fluorantene (28)	mg/Kg ss	<0,01	0,5		
Benzo(ghi)perilene (29)	mg/Kg ss	<0,01	0,1		
Crisene (30)	mg/Kg ss	<0,01	5		
Dibenzo(a,e)pirene (31)	mg/Kg ss	<0,01	0,1		
Dibenzo(a,I)pirene (32)	mg/Kg ss	<0,01	0,1		
Dibenzo(a,i)pirene (33)	mg/Kg ss	<0,01	0,1		
Dibenzo(a,h)pirene (34)	mg/Kg ss	<0,01	0,1		
Dibenzo(a,h)antracene (35)	mg/Kg ss	<0,01	0,1		
Indeno(1,2,3-cd)pirene (36)	mg/Kg ss	<0,01	0,1		
Pirene (37)	mg/Kg ss	<0,01	5		
Sommatoria policiclici aromatici (da 25 a 34)	mg/Kg ss	<1,0	10		
PCB	mg/Kg ss		0,06	EPA 3550C 2007 + EPA 8082A 2007	
Aroclor 1016	mg/Kg ss	<0,006	-		
Aroclor 1221	mg/Kg ss	<0,006	-		
Aroclor 1242	mg/Kg ss	<0,006	-		
Aroclor 1248	mg/Kg ss	<0,006	-		
Aroclor 1254	mg/Kg ss	<0,006	-		
Aroclor 1260	mg/Kg ss	<0,006	-		
ALIFATICI ALOGENATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006	
Tribromometano	mg/kg ss	<0,05	0,5		
1,2-Dibromoetano	mg/kg ss	<0,005	0,01		
Dibromoclorometano	mg/kg ss	<0,05	0,5		
Bromodiclorometano	mg/kg ss	<0,05	0,5		
ALIFATICI CLORURATI CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006	
Clorometano	mg/Kg ss	<0,02	0,1		
Diclorometano	mg/kg ss	<0,02	0,1		
Triclorometano	mg/Kg ss	<0,02	0,1		
Cloruro di vinile	mg/Kg ss	<0,005	0,01		







Spett.: Veneto Acque Spa

Via delle Giare

**FONTANIVA PD** 

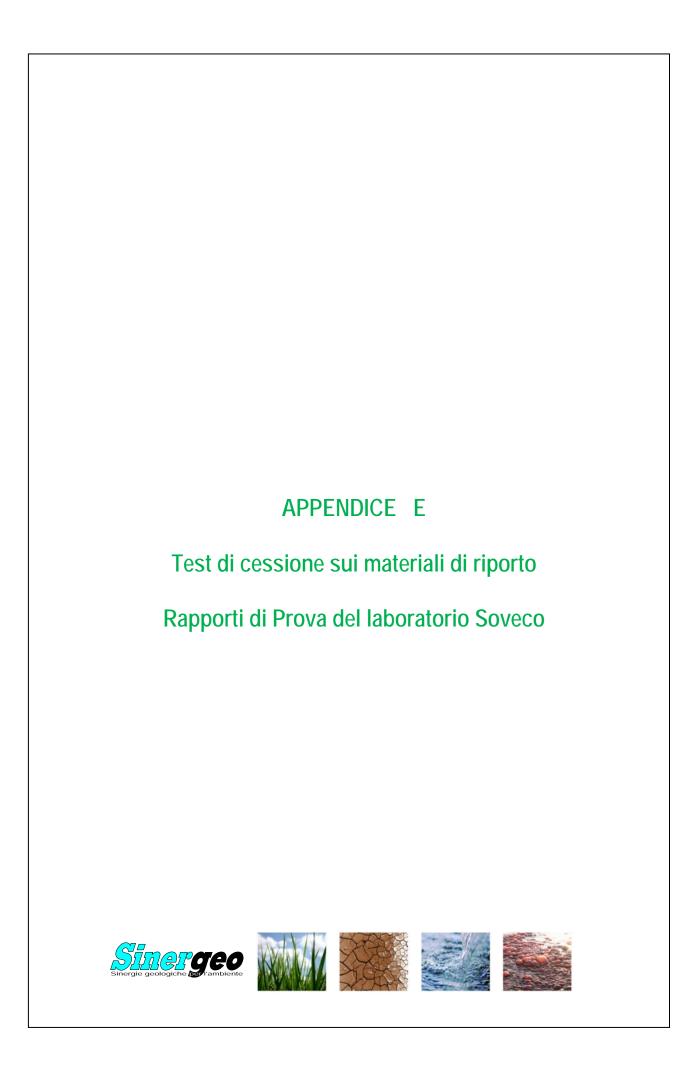
RAPPORTO DI PROVA N°

112039

Data di emissione:

29 luglio 2015

Pag. 3/3


Parametro	U.M.	Risultato	Limiti Tab.1/A all. 5 parte IV	Metodo di prova
1,2-Dicloroetano	mg/kg ss	<0,02	del D.Lgs.152/06 0,2	
1,1-Dicloroetilene	mg/kg ss	<0,02	0,1	
•		•	•	
Tricloroetilene	mg/kg ss	<0,02	1	
Tetracloroetilene (PCE)	mg/Kg ss	<0,05	0,5	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5021A 2003 + EPA 8260C 2006
	ma/ka ss	<0.0F	0.5	
1,1-Dicloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloroetilene	mg/kg ss	<0,05	0,3	
1,1,1-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2-Dicloropropano	mg/kg ss	<0,05	0,3	
1,1,2-Tricloroetano	mg/kg ss	<0,05	0,5	
1,2,3-Tricloropropano	mg/kg ss	<0,05	1	
1,1,2,2-Tetracloroetano	mg/kg ss	<0,05	0,5	
ALTRI ALIFATICI CLORURATI				EPA 5021A 2003 + EPA 8260C 2006
Cloroetano	mg/Kg ss	<0,05	-	
Tetracloruro di carbonio	mg/Kg ss	<0,05	-	
Esacloro-1,3-butadiene	mg/Kg ss	<0,05	-	
Residuo secco a 105 °C	%	94,4	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.2 DM 25/03/2002 GU n° 84 10/04/2002
SCHELETRO				
Frazione < 2 mm	%	49	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.1 DM 25/03/2002 GU n° 84 10/04/2002
Frazione compresa tra 2 mm e 2 cm	%	51	-	DM 13/09/1999 SO GU n° 248 21/10/1999 Met II.3 DM 25/03/2002 GU n° 84 10/04/2002

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

⁽a) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(b) Materiale di riferimento: Diesel Fuel (Unweathered)
(c) Materiale di riferimento: Diesel Fuel (Unweathered)
(d) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (Unweathered)
(e) Materiale di riferimento: Unleaded Gasoline (Unweathered)
(e) Materiale di riferimento: Diesel Fuel (U Risultati analitici relativi alla frazione passante al vaglio 2mm e concentrazione determinata riferendosi alla totalità dei materiali secchi, comprensiva dello scheletro.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N° 112019**Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T1/A tq - riporto

Caratteristiche fisiche:

Codice campione:

Campionamento eseguito da:

Data campionam./accettaz.#:

Data inizio prove:

Data fine prove:

O6/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI				
10802:2004 App A.2				UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI
Cloruri	mg/L	<5,0	100	EN ISO 10304-1:2009
Fluoruri	mg/L	0,2	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	<10,0	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	5	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	71	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	9,9	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112019

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Amianto¤	mg/L	<0,0024	30	MP 0382 rev 6 2012*

^{*} Prova non accreditata da ACCREDIA

## Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

 [□] Prova effettuata presso laboratorio esterno numero ACCREDIA 0051

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112020

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T2/A tq - riporto

Caratteristiche fisiche:
Codice campione:
Campionamento eseguito da:
Data campionam./accettaz.#:
Data inizio prove:
Data fine prove:
Caratteristiche fisiche:
Solido
O1612_02
Tecnico Sinergeo
19/06/2015
23/06/2015
06/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI				
10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,4	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	8,6	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	11,3	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	19	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	130	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
pH	unità di pH	9,2	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	0,02	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112020

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N° 112021**Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T3/A tq - riporto

Caratteristiche fisiche:
Codice campione:
Campionamento eseguito da:
Data campionam./accettaz.#:
Data inizio prove:
Data fine prove:
Colido
O1612_03
Tecnico Sinergeo
19/06/2015
23/06/2015
06/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI 10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,2	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	<10,0	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	6	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	75	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	9,7	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112021

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Amianto¤	mg/L	<0,0024	30	MP 0382 rev 6 2012*

^{*} Prova non accreditata da ACCREDIA

# Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

x Prova effettuata presso laboratorio esterno numero ACCREDIA (0051

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112022

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T4/A tq - riporto

Caratteristiche fisiche:

Codice campione:

Campionamento eseguito da:

Data campionam./accettaz.#:

Data inizio prove:

Data fine prove:

O6/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI 10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,4	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	12,2	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	7	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	132	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	8,3	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	6	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112022

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112023

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T5/A tq - riporto

Caratteristiche fisiche:

Codice campione:

Campionamento eseguito da:

Data campionam./accettaz.#:

Data inizio prove:

Data fine prove:

O6/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI 10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,4	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	11,7	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	10	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	136	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	8,2	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112023

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112024

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T6/A tq - riporto

Caratteristiche fisiche:

Codice campione:

Campionamento eseguito da:

Data campionam./accettaz.#:

Data inizio prove:

Data fine prove:

O6/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI 10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,2	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	33,4	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	10	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	209	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	8,9	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N° 112024

Data di emissione: 6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	3	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Amianto¤	mg/L	<0,0024	30	MP 0382 rev 6 2012*

^{*} Prova non accreditata da ACCREDIA

# Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

 [□] Prova effettuata presso laboratorio esterno numero ACCREDIA 0051

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112025

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa Luogo di produzione: 903.15.24 Denominazione campione: T7/A tq - riporto

Caratteristiche fisiche:

Codice campione:

Campionamento eseguito da:

Data campionam./accettaz.#:

Data inizio prove:

Data fine prove:

O6/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI				
10802:2004 App A.2				UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI
Cloruri	mg/L	<5,0	100	EN ISO 10304-1:2009
Fluoruri	mg/L	0,6	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	<10,0	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	15	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	126	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
pH	unità di pH	8,3	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	7	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

RAPPORTO DI PROVA N°

112025

Data di emissione:

6 luglio 2015

Pag. 2/2

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

**RAPPORTO DI PROVA N°** 112026

Data di emissione: 6 luglio 2015

Pag. 1/2

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl , Contrà del Pozzetto, 4 - VICENZA (VI)

Produttore: Veneto Acque Spa 903.15.24 Luogo di produzione: Denominazione campione: C1 tq - riporto Caratteristiche fisiche: Solido Codice campione: 01612_09 Campionamento eseguito da: Tecnico Sinergeo Data campionam./accettaz.#: 19/06/2015 23/06/2015 Data inizio prove: Data fine prove: 06/07/2015

Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
PROVA DI ELUIZIONE secondo UNI 10802:2004 App A.2				
Cloruri	mg/L	<5,0	100	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Fluoruri	mg/L	0,3	1,5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009*
Nitrati	mg/L	<5,0	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Solfati	mg/L	13,9	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 10304-1:2009
Cianuri	μg/L	<10	50	UNI 10802:2013 + UNI EN 12457-2:2004 + ISO 6703-2:1984
Richiesta chimica di ossigeno (COD)	mg/L	9	30	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003
Conducibilità	μS/cm	113	-	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 27888:1995
рН	unità di pH	8,4	5,5-12	UNI 10802:2013 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
Arsenico	μg/L	6	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Bario	mg/L	<0,10	1	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Berillio	μg/L	<1	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cadmio	μg/L	<1	5	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cobalto	μg/L	<5	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Cromo totale	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Mercurio	μg/L	<0,5	1	UNI 10802:2013 + UNI EN 12457-2:2004 + EPA 6010C 2007*
Nichel	μg/L	<5	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Piombo	μg/L	<5	50	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Rame	mg/L	<0,01	0,05	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare

FONTANIVA - (PD)

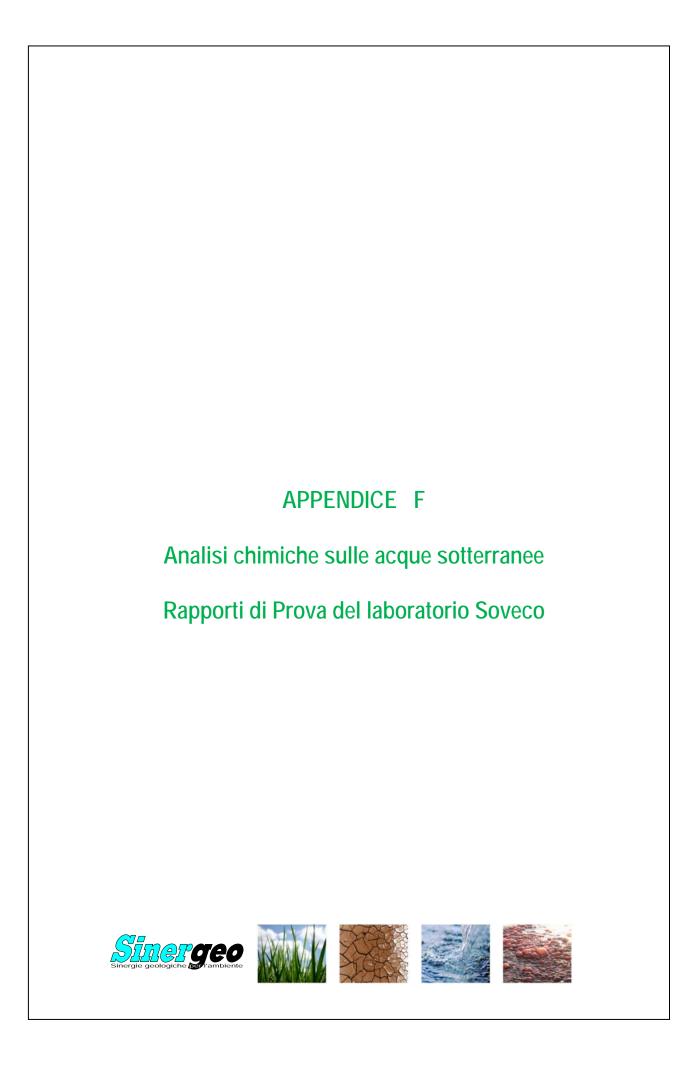
RAPPORTO DI PROVA N°

112026

Data di emissione:

6 luglio 2015

Pag. 2/2


Parametro	U.M.	Risultato	DM 05.02.98 aggiornato dal DM 05.04.06 n°186	Metodo di prova
Selenio	μg/L	<2	10	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Vanadio	μg/L	<20	250	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009
Zinco	mg/L	<0,10	3	UNI 10802:2013 + UNI EN 12457-2:2004 + UNI EN 16192:2012 + UNI EN ISO 11885:2009

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.











Spett.: Veneto Acque Spa

Via delle Giare FONTANIVA PD

RAPPORTO DI PROVA N°: 112786

Data di emissione: 4 agosto 2015

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl, Contrà del Pozzetto, 4 - VICENZA (VI)

Per conto di:

Produttore: Veneto Acque Spa

Via delle Giare - FONTANIVA (PD) - 903.15.24 Luogo di produzione:

Denominazione campione: PZ1 - acqua sotterranea - 903.15.24

01948 01 Codice campione: Campionamento eseguito da: Tecnico Sinergeo 16/07/2015 Data campionam./accettaz.#: Data inizio prove: 17/07/2015 03/08/2015 Data fine prove:

#### RISULTATI ANALITICI

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	μg/L	<100	1500	UNI EN ISO 10304-1:2009
Solfati	mg/L	17,2	250	UNI EN ISO 10304-1:2009
Cianuri liberi	μg/L	<10	50	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	μg/L	<2,0	5	APAT CNR IRSA 3150 B2 Man 29 2003
Nitriti	μg/L	<50	500	APAT CNR IRSA 4050 Man 29 2003
Alluminio	μg/L	6,3	200	UNI EN ISO 17294-2:2005
Antimonio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Argento	μg/L	<0,2	10	UNI EN ISO 17294-2:2005
Arsenico	μg/L	1,2	10	UNI EN ISO 17294-2:2005
Berillio	μg/L	<0,2	4	UNI EN ISO 17294-2:2005
Boro	μg/L	11,6	1000	UNI EN ISO 17294-2.2005
Cadmio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Cobalto	μg/L	0,3	50	UNI EN ISO 17294-2:2005
Cromo totale	μg/L	0,4	50	UNI EN ISO 17294-2:2005
Ferro	μg/L	12,7	200	UNI EN ISO 17294-2:2005
Manganese	μg/L	16,1	50	UNI EN ISO 17294-2:2005
Mercurio	μg/L	<0,5	1	UNI EN ISO 17294-2:2005
Nichel	μg/L	0,5	20	UNI EN ISO 17294-2:2005
Piombo	μg/L	<1,0	10	UN EN ISO 17294-2:2005
Rame	μg/L	<1,0	1000	UNI EN ISO 17294-2:2005
Selenio	μg/L	<0,2	10	UNI EN ISO 17294-2:2005
Tallio	μg/L	<0,2	2	UNI EN ISO 17294-2:2005
Zinco	μg/L	<5,0	3000	UNI EN ISO 17294-2:2005
IPA				EPA 3510 C 1996 + EPA 8270 D 2007
Naftalene	μg/L	<0,01	-	
Acenaftilene	μg/L	<0,01	-	

DOCUMENTO CON FIRMA DIGITALE AI SENSI DELLA NORMATIVA VIGENTE.

I risultati del presente Rapporto di Prova si riferiscono esclusivamente al campione provato. Il presente Rapporto di Prova deve essere riprodotto per intero: la riproduzione parziale, salvo approvazione scritta del Laboratorio, è vietata. Se non diversamente specificato, gli eventuali giudizi sul rispetto o meno di limiti di riferimento sono intesi come solo confronto tra il valore trovato ed i limite, senza considerare l'incertezza di misura. Tempi di conservazione campione: 15 giorni, quando applicabile; registrazioni delle prove: 5 anni; Rapporto di prova: 5 anni.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112786

4 agosto 2015 Data di emissione:

Pag. 2/4

arametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	μg/L	<0,01	-	
Fluorene	μg/L	<0,01	-	
Fenantrene	μg/L	<0,01	-	
Antracene	μg/L	<0,01	-	
Fluorantene	μg/L	<0,01	-	
Pirene	μg/L	<0,01	50	
Benzo(a)antracene	μg/L	<0,01	0,1	
Crisene	μg/L	<0,01	5	
Benzo(e)pirene	μg/L	<0,01	-	
Benzo(a)pirene	μg/L	<0,01	0,01	
Perilene	μg/L	<0,01	-	
Dibenzo(a,h)antracene	μg/L	<0,01	0,01	
Dibenzo(a,l)pirene	μg/L	<0,01	-	
Dibenzo(a,e)pirene	μg/L	<0,01	-	
Dibenzo(a,i)pirene	μg/L	<0,01	-	
Dibenzo(a,h)pirene	μg/L	<0,01	-	
Benzo(b)fluorantene (31)	μg/L	<0,01	0,1	
Benzo(k)fluorantene (32)	μg/L	<0,01	0,05	
Benzo(g,h,i)perilene (33)	μg/L	<0,01	0,01	
Indeno(1,2,3-c,d)pirene (36)	μg/L	<0,01	0,1	
Sommatoria IPA (31,32,33,36)	μg/L	<0,04	0,1	
РСВ	μg/L		0,01	EPA 3510C 1996 + EPA 8082A 2007*
Aroclor 1254	μg/L	<0,01	-	
Aroclor 1242	μg/L	<0,01	-	
Aroclor 1260	μg/L	<0,01	-	
Aroclor 1016	μg/L	<0,01	-	
Aroclor 1248	μg/L	<0,01	-	
Aroclor 1221	μg/L	<0,01	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Tribromometano	μg/L	<0,2	0,3	
Triclorofluorometano	μg/L	<0,2	-	
1,2-Dibromoetano	μg/L	<0,001	0,001	
Dibromoclorometano	μg/L	<0,1	0,13	
Bromometano	μg/L	<0,2	-	
Iodometano	μg/L	<0,2	-	
Bromodiclorometano	μg/L	<0,1	0,17	
Bromoclorometano	μg/L	<0,2	-	
ALIFATICI CLORURATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Clorometano	μg/L	<0,2	1,5	

DOCUMENTO CON FIRMA DIGITALE AI SENSI DELLA NORMATIVA VIGENTE.

I risultati del presente Rapporto di Prova si riferiscono esclusivamente al campione provato. Il presente Rapporto di Prova deve essere riprodotto per intero: la riproduzione parziale, salvo approvazione scritta del Laboratorio, è vietata. Se non diversamente specificato, gli eventuali giudizi sul rispetto o meno di limiti di riferimento sono intesi come solo confronto tra il valore trovato ed i limite, senza considerare l'incertezza di misura. Tempi di conservazione campione: 15 giorni, quando applicabile; registrazioni delle prove: 5 anni; Rapporto di prova: 5 anni.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112786

Data di emissione: 4 agosto 2015

Pag. 3/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Cloruro di vinile	μg/L	<0,2	0,5	
1,2-Dicloroetano	μg/L	<0,2	3	
1,1-Dicloroetilene	μg/L	<0,01	0,05	
Triclorometano (cloroformio)	μg/L	<0,05	0,15	
Tricloroetilene	μg/L	<0,2	1,5	
Tetracloroetilene	μg/L	<0,2	1,1	
Esaclorobutadiene	μg/L	<0,1	0,15	
Sommatoria organoclorurati	μg/L	<1,0	-	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
1,1-Dicloroetano	μg/L	<0,2	810	
1,2-Dicloroetilene (cis-+trans-)	μg/L	<0,2	60	
1,2-Dicloropropano	μg/L	<0,1	0,15	
Diclorodifluoropropano	μg/L	<0,2	-	
1,1,2-Tricloroetano	μg/L	<0,1	0,2	
1,2,3-Tricloropropano	μg/L	<0,001	0,001	
1,1,2,2-Tetracloroetano	μg/L	<0,01	0,05	
1,1,1,2-Tetracloroetano	μg/L	<0,2	-	
COMPOSTI ORGANICI AROMATICI				EPA 5030C 2003 + EPA 8260C 2006
Benzene	μg/L	<0,2	1	
Etilbenzene	μg/L	<1,0	50	
Stirene	μg/L	<1,0	25	
Toluene	μg/L	<1,0	15	
p-Isopropiltoluene	μg/L	<0,2	-	
2-Clorotoluene	μg/L	<0,2	-	
4-Clorotoluene	μg/L	<0,2	-	
ter-Butilbenzene	μg/L	<0,2	-	
sec-Butilbenzene	μg/L	<0,2	-	
m-p- Xilene	μg/L	<1,0	-	
o-Xilene	μg/L	<1,0	-	
n-Propilbenzene	μg/L	<0,2	-	
Isopropilbenzene	μg/L	<0,2	-	
Bromobenzene	μg/L	<0,2	-	
1,3,5-Trimetilbenzene	μg/L	<0,2	-	
1,2,4-Trimetilbenzene	μg/L	<0,2	-	
Idrocarburi totali (come n-esano)	μg/L	19	350	EPA 3510C 1996 + EPA 8015D 2003*
Diossine -Furani 2,3,7,8 clorosostituiti¤				
CONGENERI TOSSICI SECONDO OMS X				
PCDD SOSTITUITE IN 2,3,7,8 x	,			
2,3,7,8-tetracdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994







analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112786

Data di emissione: 4 agosto 2015

Pag. 4/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2,3,7,8-pentacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
PCDF SOSTITUITE IN 2,3,7,8 ¤				
2,3,7,8-tetracdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8,9-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdf ¤	ng/L	0,0348	-	EPA 1613 B 1994
Equivalente di tossicità (i-teq) ¤	ng/L	0,0000348	0,004	NATO CCMS I-TEF 1988

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare FONTANIVA PD

RAPPORTO DI PROVA N°: 112787

Data di emissione: 4 agosto 2015

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl, Contrà del Pozzetto, 4 - VICENZA (VI)

Per conto di:

Produttore: Veneto Acque Spa

Via delle Giare - FONTANIVA (PD) - 903.15.24 Luogo di produzione:

Denominazione campione: PZ2 - acqua sotterranea - 903.15.24

O1948 02 Codice campione: Campionamento eseguito da: Tecnico Sinergeo 16/07/2015 Data campionam./accettaz.#: Data inizio prove: 17/07/2015 03/08/2015 Data fine prove:

#### RISULTATI ANALITICI

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	μg/L	<100	1500	UNI EN ISO 10304-1:2009
Solfati	mg/L	17,3	250	UNI EN ISO 10304-1:2009
Cianuri liberi	μg/L	<10	50	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	μg/L	<2,0	5	APAT CNR IRSA 3150 B2 Man 29 2003
Nitriti	μg/L	<50	500	APAT CNR IRSA 4050 Man 29 2003
Alluminio	μg/L	5,6	200	UNI EN ISO 17294-2:2005
Antimonio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Argento	μg/L	<0,2	10	UNI EN ISO 17294-2:2005
Arsenico	μg/L	1,5	10	UNI EN ISO 17294-2:2005
Berillio	μg/L	<0,2	4	UNI EN ISO 17294-2:2005
Boro	μg/L	10,4	1000	UNI EN ISO 17294-2.2005
Cadmio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Cobalto	μg/L	<0,2	50	UNI EN ISO 17294-2:2005
Cromo totale	μg/L	0,5	50	UNI EN ISO 17294-2:2005
Ferro	μg/L	<5,0	200	UNI EN ISO 17294-2:2005
Manganese	μg/L	2,8	50	UNI EN ISO 17294-2:2005
Mercurio	μg/L	<0,5	1	UNI EN ISO 17294-2:2005
Nichel	μg/L	0,6	20	UNI EN ISO 17294-2:2005
Piombo	μg/L	<1,0	10	UN EN ISO 17294-2:2005
Rame	μg/L	<1,0	1000	UNI EN ISO 17294-2:2005
Selenio	μg/L	<0,2	10	UNI EN ISO 17294-2:2005
Tallio	μg/L	<0,2	2	UNI EN ISO 17294-2:2005
Zinco	μg/L	<5,0	3000	UNI EN ISO 17294-2:2005
IPA				EPA 3510 C 1996 + EPA 8270 D 2007
Naftalene	μg/L	<0,01	-	
Acenaftilene	μg/L	<0,01	-	

DOCUMENTO CON FIRMA DIGITALE AI SENSI DELLA NORMATIVA VIGENTE.

I risultati del presente Rapporto di Prova si riferiscono esclusivamente al campione provato. Il presente Rapporto di Prova deve essere riprodotto per intero: la riproduzione parziale, salvo approvazione scritta del Laboratorio, è vietata. Se non diversamente specificato, gli eventuali giudizi sul rispetto o meno di limiti di riferimento sono intesi come solo confronto tra il valore trovato ed i limite, senza considerare l'incertezza di misura. Tempi di conservazione campione: 15 giorni, quando applicabile; registrazioni delle prove: 5 anni; Rapporto di prova: 5 anni.









Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112787

4 agosto 2015 Data di emissione:

Pag. 2/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	μg/L	<0,01	-	
Fluorene	μg/L	<0,01	-	
Fenantrene	μg/L	<0,01	-	
Antracene	μg/L	<0,01	-	
Fluorantene	μg/L	<0,01	-	
Pirene	μg/L	<0,01	50	
Benzo(a)antracene	μg/L	<0,01	0,1	
Crisene	μg/L	<0,01	5	
Benzo(e)pirene	μg/L	<0,01	-	
Benzo(a)pirene	μg/L	<0,01	0,01	
Perilene	μg/L	<0,01	-	
Dibenzo(a,h)antracene	μg/L	<0,01	0,01	
Dibenzo(a,l)pirene	μg/L	<0,01	-	
Dibenzo(a,e)pirene	μg/L	<0,01	-	
Dibenzo(a,i)pirene	μg/L	<0,01	-	
Dibenzo(a,h)pirene	μg/L	<0,01	-	
Benzo(b)fluorantene (31)	μg/L	<0,01	0,1	
Benzo(k)fluorantene (32)	μg/L	<0,01	0,05	
Benzo(g,h,i)perilene (33)	μg/L	<0,01	0,01	
Indeno(1,2,3-c,d)pirene (36)	μg/L	<0,01	0,1	
Sommatoria IPA (31,32,33,36)	μg/L	<0,04	0,1	
PCB	μg/L		0,01	EPA 3510C 1996 + EPA 8082A 2007*
Aroclor 1254	μg/L	<0,01	-	
Aroclor 1242	μg/L	<0,01	-	
Aroclor 1260	μg/L	<0,01	-	
Aroclor 1016	μg/L	<0,01	-	
Aroclor 1248	μg/L	<0,01	-	
Aroclor 1221	μg/L	<0,01	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Tribromometano	μg/L	<0,2	0,3	
Triclorofluorometano	μg/L	<0,2	-	
1,2-Dibromoetano	μg/L	<0,001	0,001	
Dibromoclorometano	μg/L	<0,1	0,13	
Bromometano	μg/L	<0,2	-	
Iodometano	μg/L	<0,2	-	
Bromodiclorometano	μg/L	<0,1	0,17	
Bromoclorometano	μg/L	<0,2	-	
ALIFATICI CLORURATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Clorometano	μg/L	<0,2	1,5	









Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112787

4 agosto 2015 Data di emissione:

Pag. 3/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Cloruro di vinile	μg/L	<0,2	0,5	
1,2-Dicloroetano	μg/L	<0,2	3	
1,1-Dicloroetilene	μg/L	<0,01	0,05	
Triclorometano (cloroformio)	μg/L	<0,05	0,15	
Tricloroetilene	μg/L	<0,2	1,5	
Tetracloroetilene	μg/L	<0,2	1,1	
Esaclorobutadiene	μg/L	<0,1	0,15	
Sommatoria organoclorurati	μg/L	<1,0	-	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
1,1-Dicloroetano	μg/L	<0,2	810	
1,2-Dicloroetilene (cis-+trans-)	μg/L	<0,2	60	
1,2-Dicloropropano	μg/L	<0,1	0,15	
Diclorodifluoropropano	μg/L	<0,2	-	
1,1,2-Tricloroetano	μg/L	<0,1	0,2	
1,2,3-Tricloropropano	μg/L	<0,001	0,001	
1,1,2,2-Tetracloroetano	μg/L	<0,01	0,05	
1,1,1,2-Tetracloroetano	μg/L	<0,2	-	
COMPOSTI ORGANICI AROMATICI				EPA 5030C 2003 + EPA 8260C 2006
Benzene	μg/L	<0,2	1	
Etilbenzene	μg/L	<1,0	50	
Stirene	μg/L	<1,0	25	
Toluene	μg/L	<1,0	15	
p-Isopropiltoluene	μg/L	<0,2	-	
2-Clorotoluene	μg/L	<0,2	-	
4-Clorotoluene	μg/L	<0,2	-	
ter-Butilbenzene	μg/L	<0,2	-	
sec-Butilbenzene	μg/L	<0,2	-	
m-p- Xilene	μg/L	<1,0	-	
o-Xilene	μg/L	<1,0	-	
n-Propilbenzene	μg/L	<0,2	-	
Isopropilbenzene	μg/L	<0,2	-	
Bromobenzene	μg/L	<0,2	-	
1,3,5-Trimetilbenzene	μg/L	<0,2	-	
1,2,4-Trimetilbenzene	μg/L	<0,2	-	
Idrocarburi totali (come n-esano)	μg/L	25	350	EPA 3510C 1996 + EPA 8015D 2003*
Diossine -Furani 2,3,7,8 clorosostituiti¤ CONGENERI TOSSICI SECONDO OMS ¤				
PCDD SOSTITUITE IN 2,3,7,8 ×				
2,3,7,8-tetracdd ¤	ng/I	<0,00050		FDA 1613 D 1004
2,3,1,0-tett duu x	ng/L	<0,00050	-	EPA 1613 B 1994









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°:

112787

Data di emissione:

4 agosto 2015

Pag. 4/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2,3,7,8-pentacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
PCDF SOSTITUITE IN 2,3,7,8 ¤				
2,3,7,8-tetracdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8,9-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdf ¤	ng/L	0,128	-	EPA 1613 B 1994
Equivalente di tossicità (i-teq) ¤	ng/L	0,000128	0,004	NATO CCMS I-TEF 1988

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.









Spett.: Veneto Acque Spa

Via delle Giare FONTANIVA PD

RAPPORTO DI PROVA N°: 112788

Data di emissione: 4 agosto 2015

Pag. 1/4

#### INFORMAZIONI CAMPIONE

Committente: Sinergeo Srl, Contrà del Pozzetto, 4 - VICENZA (VI)

Per conto di:

Produttore: Veneto Acque Spa

Via delle Giare - FONTANIVA (PD) - 903.15.24 Luogo di produzione:

Denominazione campione: PZ3 - acqua sotterranea - 903.15.24

O1948 03 Codice campione: Campionamento eseguito da: Tecnico Sinergeo 16/07/2015 Data campionam./accettaz.#: Data inizio prove: 17/07/2015 03/08/2015 Data fine prove:

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Fluoruri	μg/L	<100	1500	UNI EN ISO 10304-1:2009
Solfati	mg/L	17,8	250	UNI EN ISO 10304-1:2009
Cianuri liberi	μg/L	<10	50	EPA 9010C 2004 + EPA 9014 1996*
Cromo esavalente	μg/L	<2,0	5	APAT CNR IRSA 3150 B2 Man 29 2003
Nitriti	μg/L	120	500	APAT CNR IRSA 4050 Man 29 2003
Alluminio	μg/L	<5,0	200	UNI EN ISO 17294-2:2005
Antimonio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Argento	μg/L	<0,2	10	UNI EN ISO 17294-2:2005
Arsenico	μg/L	2,4	10	UNI EN ISO 17294-2:2005
Berillio	μg/L	<0,2	4	UNI EN ISO 17294-2:2005
Boro	μg/L	10,5	1000	UNI EN ISO 17294-2.2005
Cadmio	μg/L	<0,2	5	UNI EN ISO 17294-2:2005
Cobalto	μg/L	0,3	50	UNI EN ISO 17294-2:2005
Cromo totale	μg/L	0,4	50	UNI EN ISO 17294-2:2005
Ferro	μg/L	<5,0	200	UNI EN ISO 17294-2:2005
Manganese	μg/L	11,2	50	UNI EN ISO 17294-2:2005
Mercurio	μg/L	<0,5	1	UNI EN ISO 17294-2:2005
Nichel	μg/L	1,0	20	UNI EN ISO 17294-2:2005
Piombo	μg/L	<1,0	10	UN EN ISO 17294-2:2005
Rame	μg/L	<1,0	1000	UNI EN ISO 17294-2:2005
Selenio	μg/L	0,4	10	UNI EN ISO 17294-2:2005
Tallio	μg/L	<0,2	2	UNI EN ISO 17294-2:2005
Zinco	μg/L	<5,0	3000	UNI EN ISO 17294-2:2005
IPA				EPA 3510 C 1996 + EPA 8270 D 2007
Naftalene	μg/L	<0,01	-	
Acenaftilene	μg/L	<0,01	-	









Via delle Giare **FONTANIVA PD** 

Spett.: Veneto Acque Spa

RAPPORTO DI PROVA N°: 112788

Data di emissione: 4 agosto 2015

Pag. 2/4

Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Acenaftene	μg/L	<0,01	-	
Fluorene	μg/L	<0,01	-	
Fenantrene	μg/L	<0,01	-	
Antracene	μg/L	<0,01	-	
Fluorantene	μg/L	<0,01	-	
Pirene	μg/L	<0,01	50	
Benzo(a)antracene	μg/L	<0,01	0,1	
Crisene	μg/L	<0,01	5	
Benzo(e)pirene	μg/L	<0,01	-	
Benzo(a)pirene	μg/L	<0,01	0,01	
Perilene	μg/L	<0,01	-	
Dibenzo(a,h)antracene	μg/L	<0,01	0,01	
Dibenzo(a,l)pirene	μg/L	<0,01	-	
Dibenzo(a,e)pirene	μg/L	<0,01	-	
Dibenzo(a,i)pirene	μg/L	<0,01	-	
Dibenzo(a,h)pirene	μg/L	<0,01	-	
Benzo(b)fluorantene (31)	μg/L	<0,01	0,1	
Benzo(k)fluorantene (32)	μg/L	<0,01	0,05	
Benzo(g,h,i)perilene (33)	μg/L	<0,01	0,01	
Indeno(1,2,3-c,d)pirene (36)	μg/L	<0,01	0,1	
Sommatoria IPA (31,32,33,36)	μg/L	<0,04	0,1	
PCB	μg/L		0,01	EPA 3510C 1996 + EPA 8082A 2007*
Aroclor 1254	μg/L	<0,01	-	
Aroclor 1242	μg/L	<0,01	-	
Aroclor 1260	μg/L	<0,01	-	
Aroclor 1016	μg/L	<0,01	-	
Aroclor 1248	μg/L	<0,01	-	
Aroclor 1221	μg/L	<0,01	-	
ALIFATICI ALOGENATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Tribromometano	μg/L	<0,2	0,3	
Triclorofluorometano	μg/L	<0,2	-	
1,2-Dibromoetano	μg/L	<0,001	0,001	
Dibromoclorometano	μg/L	<0,1	0,13	
Bromometano	μg/L	<0,2	-	
Iodometano	μg/L	<0,2	-	
Bromodiclorometano	μg/L	<0,1	0,17	
Bromoclorometano	μg/L	<0,2	-	
ALIFATICI CLORURATI CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
Clorometano	μg/L	<0,2	1,5	

DOCUMENTO CON FIRMA DIGITALE AI SENSI DELLA NORMATIVA VIGENTE.









analisi chimiche e microbiologiche

Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112788

Data di emissione: 4 agosto 2015

Pag. 3/4

arametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
Cloruro di vinile	μg/L	<0,2	0,5	
1,2-Dicloroetano	μg/L	<0,2	3	
1,1-Dicloroetilene	μg/L	<0,01	0,05	
Triclorometano (cloroformio)	μg/L	<0,05	0,15	
Tricloroetilene	μg/L	<0,2	1,5	
Tetracloroetilene	μg/L	<0,2	1,1	
Esaclorobutadiene	μg/L	<0,1	0,15	
Sommatoria organoclorurati	μg/L	<1,0	-	
ALIFATICI CLORURATI NON CANCEROGENI				EPA 5030C 2003 + EPA 8260C 2006
1,1-Dicloroetano	μg/L	<0,2	810	
1,2-Dicloroetilene (cis-+trans-)	μg/L	<0,2	60	
1,2-Dicloropropano	μg/L	<0,1	0,15	
Diclorodifluoropropano	μg/L	<0,2	-	
1,1,2-Tricloroetano	μg/L	<0,1	0,2	
1,2,3-Tricloropropano	μg/L	<0,001	0,001	
1,1,2,2-Tetracloroetano	μg/L	<0,01	0,05	
1,1,1,2-Tetracloroetano	μg/L	<0,2	-	
COMPOSTI ORGANICI AROMATICI				EPA 5030C 2003 + EPA 8260C 2006
Benzene	μg/L	<0,2	1	
Etilbenzene	μg/L	<1,0	50	
Stirene	μg/L	<1,0	25	
Toluene	μg/L	<1,0	15	
p-Isopropiltoluene	μg/L	<0,2	-	
2-Clorotoluene	μg/L	<0,2	-	
4-Clorotoluene	μg/L	<0,2	-	
ter-Butilbenzene	μg/L	<0,2	-	
sec-Butilbenzene	μg/L	<0,2	-	
m-p- Xilene	μg/L	<1,0	-	
o-Xilene	μg/L	<1,0	-	
n-Propilbenzene	μg/L	<0,2	-	
Isopropilbenzene	μg/L	<0,2	-	
Bromobenzene	μg/L	<0,2	-	
1,3,5-Trimetilbenzene	μg/L	<0,2	-	
1,2,4-Trimetilbenzene	μg/L	<0,2	-	
Idrocarburi totali (come n-esano)	μg/L	25	350	EPA 3510C 1996 + EPA 8015D 2003*
iossine -Furani 2,3,7,8 clorosostituiti¤				
CONGENERI TOSSICI SECONDO OMS ¤				
PCDD SOSTITUITE IN 2,3,7,8 ¤				
2,3,7,8-tetracdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994







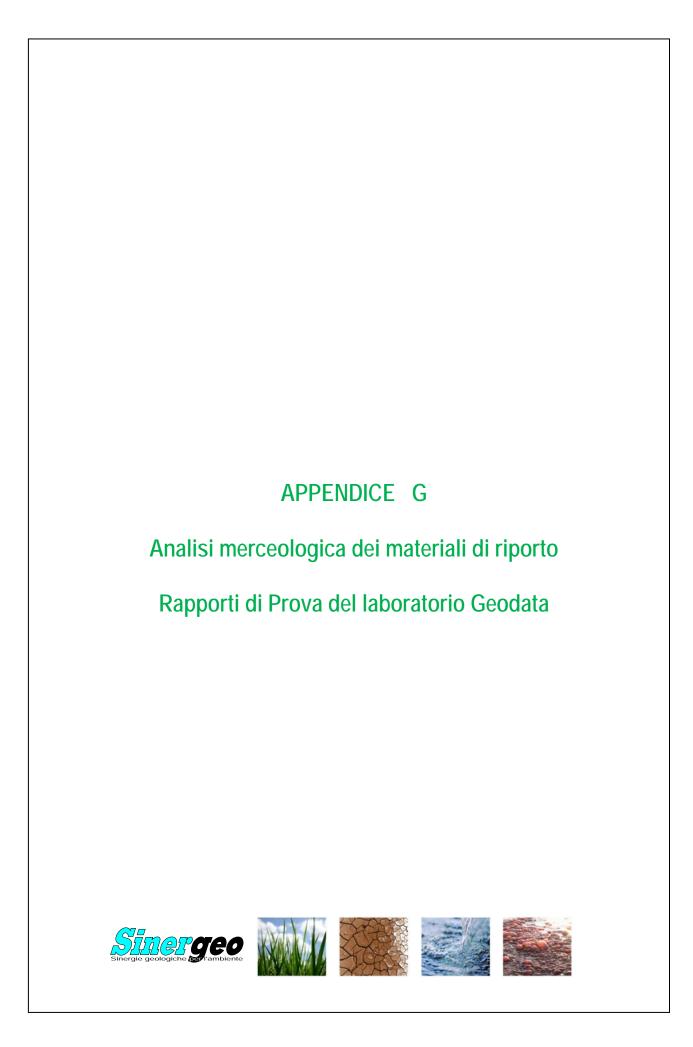
Spett.: Veneto Acque Spa

Via delle Giare **FONTANIVA PD** 

RAPPORTO DI PROVA N°: 112788

Data di emissione: 4 agosto 2015

Pag. 4/4


Parametro	U.M.	Risultato	Limiti Tab.2 all. 5 parte IV del D.Lgs.152/06	Metodo di prova
1,2,3,7,8-pentacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdd ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdd ¤	ng/L	0,0053	-	EPA 1613 B 1994
PCDF SOSTITUITE IN 2,3,7,8 ¤				
2,3,7,8-tetracdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,7,8-pentacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
2,3,4,6,7,8-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,7,8,9-esacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,6,7,8-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
1,2,3,4,7,8,9-eptacdf ¤	ng/L	<0,00050	-	EPA 1613 B 1994
Octacdf ¤	ng/L	0,0444	-	EPA 1613 B 1994
Equivalente di tossicità (i-teq) ¤	ng/L	0,0000497	0,004	NATO CCMS I-TEF 1988

^{*} Prova non accreditata da ACCREDIA

#### Il Responsabile Tecnico

Dott. Alberto Milano Ordine Interprov. dei Chimici del Veneto N° 881 sez. A

[#] Se non diversamente specificato la data si riferisce a quella di campionamento solo quando eseguito da tecnici Soveco; in tutti gli altri casi si riferisce alla data di accettazione.





#### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD) Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com

18115



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Commessa n.

	Data emissione relaz	ione	06/0	7/15		
Verbale di accettaz	ione n.	1811	5 del		17/06/15	
Committente:		Con	ERGEO S.1 trà del Pozz 00 – Vicenza	etto,	4	
Cantiere:			9031524 – `aniva (PD)	Via (	delle Giare	
Tipologia di prove	richieste:	Natu	ıra compone	enti		
Data prelievo camp	pione:	16/0	6/15			
Prove di laboratori	o/in sito richieste da:	Dott	. Geol. Rob	erto	Pedron	
Data esecuzione pr	ove 02/07/15		Data emissic	one de	ocumento	06/07/15

Per Vostro incarico, ricevuto tramite il Dott. Roberto Pedron della SINERGEO S.r.l., abbiamo eseguito analisi di laboratorio per n. 7 campioni consegnati il 17/06/15.

I campioni risultano così individuati:

- Camp. T1/A Materiale di riporto;
- Camp. T2/A Materiale di riporto;
- Camp. T3/A Materiale di riporto;
  - Pagina 1 di 2 -
  - Commessa 18115 -



#### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com



Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

- Camp. T4/A Materiale di riporto;
- Camp. T5/A Materiale di riporto;
- Camp. T6/A Materiale di riporto;
- Camp. T7/A Materiale di riporto.

Come da Voi richiesto, sui campioni consegnati sono state eseguite le seguenti prove:

- Classificazione geotecnica visiva compresa essicazione, quartatura e manipolazione di campioni rimaneggiati in grande quantità;
- Natura Componenti (UNI EN 13285).

I risultati delle prove eseguite sono riportati nei rapporti di prova allegati.

### RAPPORTI DI PROVA EMESSI

Identificativo campione/prova	Tipo di prova	n. rapporto di prova
T1/A	Classificazione visiva	50615
1 1/A	Natura componenti (UNI EN 13285)	50715
T2/A	Classificazione visiva	50815
12/A	Natura componenti (UNI EN 13285)	50915
T3/A	Classificazione visiva	51015
13/A	Natura componenti (UNI EN 13285)	51115
T4/4	Classificazione visiva	51215
14/4	Natura componenti (UNI EN 13285)	51315
T5/A	Classificazione visiva	51415
13/A	Natura componenti (UNI EN 13285)	51515
T6/A	Classificazione visiva	51615
10/A	Natura componenti (UNI EN 13285)	51715
T7/A	Classificazione visiva	51815
1 //A	Natura componenti (UNI EN 13285)	51915

Ponte San Nicolò, 06 luglio 2015

Dott. Geol. Pietro Daminato

Direttore Laboratorio

GEODATA S.a.s. di P. Daminato & C. Viale Benelux, 1/C 35020 Ponte San Nicolò (PD) Tel. 049.8705575 - Fax 049.7628815 P. IVA 01370550285 - CCIAA 206643 Iscr. Tribunale Padova n. 28754



## GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: Info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova nº	50615		pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data ricev	vimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO	S.r.l Vice	enza			
CANTIERE:	Rif. 9031524	- Via delle	Giare - Fonta	aniva (PD)		
Prelievo del:	T1		Camp.: ,	Α	Prof.:	Materiale di riporto
CI	LASSIFICAZI	ONE GEO	TECNICA CA	MPIONE R	IMANEGGIAT	0
Descrizione geotec	nica visiva:	materiale grigio-mai		sso-fine frar	nmisto a sabbia	a limosa
Denomin	azione CE:					
	Categoria:		(UNI EN 13	242)		
Classificazione U <b>l</b> Classificazi		classe	ND ND		lg [	ND
Prov	e eseguite:	natura co	mponenti			
	Note:					
legenda:	ND = NON DET	ERMINATO				
normativa di riferimento:	Raccomanda UNI 11531-1 USCS			Sperime Period	ntatore . Fiore	Direttere Laboratorio



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com



and the second s				
Rapporto di Prova nº	50715	pag. 1/1	emesso il	06/07/15
Verbale di Accettazione n.	. 18115	data ricevimento campione 17/06/15	data prova	02/07/15
OMMITTENTE:	SINERGEO S.r	.l Vicenza		
CANTIERE:	Rif. 9031524 - \	/ia delle Giare - Fontaniva (PD)		
Prelievo del:	T1	Camp.N°: 🛕	Prof.: Materiale d	li riporto
		NATURA COMPONENTI		
		natura componenti	%	
	Materiali litici, p laterizi, refrattar	ietrisco, calcestruzzo, i etc	80,9	
	Vetro e scorie v	etrose	4,9	
	Conglomerati b	ituminosi	7,6	
	Altri rifiuti miner	ali	0,0	
		ibile: carta, legno, fibre tessili etc i cavi: corrugati, tubi etc.	3,6	
	Altri Materiali: g lana di roccia et		3,0	
<i>lote</i> : come specificato d	alla norma di rife	rimento, si sono presi in considera	zione gli elementi magg	iori a 8 mm
orma di riferimento: UNI EN 13285	:2004	Sperimentatore Perit <u>o A Fi</u> ore	Direttore La	Doratorio  Daminato

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA AUTORIZZAZIONE SCRITTA DELLA GEODATA S.A.S.



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova nº	50815		pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	. 18115	data rice	vimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO			(DD)		
CANTIERE:	Rif. 9031524	i - Via delle	e Giare - Fonta	iniva (PD)		
Prelievo del:	T2		Camp.: /	4	Prof.: I	Materiale di riporto
С	LASSIFICAZ	IONE GEO	TECNICA CA	MPIONE R	IMANEGGIATO	)
Classificazione	geotecnica:	materiale	di riporto gros	so-fine con	limo sabbioso	grigio-marrone
Denomir	nazione CE: Categoria:		(UNI EN 13:	242)		
Classificazione Ul Classificazi	NI 11531-1:	classe	ND ND		Ig [	ND
Prov	ve eseguite:	% natura	componenti			
	Note:					
legenda:	ND = NON DET	TERMINATO	, 1 to 1 t			
normativa di riferimento:	Raccomand UNI 11531-1			Sperime	atatore	Directore Laboratorio



#### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



Dott. Pietro Daminato

Rapporto di Prova n'	50915	pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n	. 18115	data ricevimento campione	17/06/15	data prova	02/07/15
DMMITTENTE:	SINERGEO S.r	.l Vicenza			
NTIERE:	Rif. 9031524 - \	Via delle Giare - Fontaniva	ı (PD)		
Prelievo del	: <b>T2</b>	Camp.N°: 🛕		Prof.: <b>Materiale (</b> )	riporto
		NATURA COMPO	IENTI		
		natura componenti		%	
	Materiali litici, p laterizi, refrattar	ietrisco, calcestruzzo, ri etc		57,0	
	Vetro e scorie v	retrose		2,2	
	Conglomerati b	ituminosi		0,0	
	Altri rifiuti miner	ali		0,0	
		ibile: carta, legno, fibre te i cavi: corrugati, tubi etc.	ssili etc	10,9	
	Altri Materiali: g lana di roccia e			29,9	
ote : come specificato c	lalla norma di rife	erimento, si sono presi in c	onsiderazio	ne gli elementi maqqi	ori a 8 mm



#### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova nº	51015	pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data ricevimento campione	17/06/15	data prova	02/07/15
COMMITTENTE: CANTIERE:		S.r.l Vicenza 4 - Via delle Giare - Fonta	niva (PD)		
Prelievo del:	Т3	Camp.: /	<b>\</b>	Prof.:	Materiale di riporto
С	LASSIFICAZ	IONE GEOTECNICA CA	MPIONE R	RIMANEGGIATO	)
Classificazione	geotecnica:	materiale di riporto gros grigio-marrone	so-fine fran	mmisto a sabbia	a limosa
Denomir	azione CE:				

(UNI EN 13242)

Classificazione UNI 11531-1: classe ND

Classificazione USCS: ND

Categoria:

Prove eseguite: % natura componenti

Note: - - -

legenda: ND = NON DETERMINATO

normativa di riferimento: Raccomandazioni AGI

UNI 11531-1 USCS

Sperimentatore Perite A Fiore Direttore Laboratorio

ND



## GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



Dott. Piero Daminato

		, -	1/1	emesso il	06/07/15
Verbale di Accettazione n	. 18115	data ricevimento campione	17/06/15	data prova	02/07/15
MMITTENTE:	SINERGEO S.r	.l Vicenza	<del>.</del>		
NTIERE:	Rif. 9031524 - \	∕ia delle Giare - Fontaniva	a (PD)		
Prelievo del	: Т3	Camp.N°: 🛕		Prof.: <b>Materiale d</b>	li riporto
		NATURA COMPO	NENTI		
		natura componenti		%	
	Materiali litici, p laterizi, refrattar	ietrisco, calcestruzzo, ri etc		84,4	
	Vetro e scorie v	retrose		0,3	
	Conglomerati b	ituminosi		0,6	
	Altri rifiuti miner	ali		0,0	
		ribile: carta, legno, fibre te i cavi: corrugati, tubi etc.	ssili etc	13,5	
	Altri Materiali: g lana di roccia e			1,2	
ote: come specificato d	lalla norma di rife	rimento, si sono presi in c	considerazio	ne gli elementi magg	iori a 8 m



# GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova n°	51215		pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data rice	evimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO	S.r.l Vice	enza			
CANTIERE:	Rif. 9031524	- Via delle	e Giare - Fonta	niva (PD)		
Prelievo del:	T4		Camp.: /	4	Prof.:	Materiale di riporto
С	LASSIFICAZI	ONE GEO	OTECNICA CA	MPIONE RI	MANEGGIATO	
Classificazione	geotecnica:	materiale grigio-ma		so-fine fram	misto a limo sa	abbio-argilloso
Denomir	nazione CE:					
	Categoria:		(UNI EN 13	242)		
Classificazione Ul Classificazi	NI 11531-1: ione USCS:	classe	ND ND		Ig [	ND
Prov	/e eseguite:	% natura	componenti			
	Note:					
	ND NOVE					
legenda:	ND = NON DET	EKMINAIO				
normativa di riferimento:	Raccomanda UNI 11531-1 USCS			Speriment Perite A	tatore Fiore	Direttore Laboratorio



GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



Rapporto di Prova nº	51315	pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data ricevimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO S.r.l \	√icenza			
CANTIERE:	Rif. 9031524 - Via d	elle Giare - Fontaniva	a (PD)		
Prelievo del:	T4	Camp.N°: <b>▲</b>		Prof.: <b>Materiale d</b>	i riporto
	N	ATURA COMPOI	NENTI		
	natu	ıra componenti		%	
	Materiali litici, pietris laterizi, refrattari etc			91,6	
	Vetro e scorie vetro	se		5,0	
	Conglomerati bitum	inosi		0,0	
	Altri rifiuti minerali			0,0	
		: carta, legno, fibre te /i: corrugati, tubi etc.	essili etc	3,4	
	Altri Materiali: gesso lana di roccia etc.	o, metalli,		0,0	
Note: come specificato d	alla norma di riferime	ento, si sono presi in o	considerazione g	ıli elementi maggi	iori a 8 mm
norma di riferimento: UNI EN 13285	:2004		entatore A.Fiore	Direttore La	



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova nº	51415		pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data rice	vimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO Rif. 9031524		enza e Giare - Fonta	aniva (PD)		
Prelievo del:			Camp.:		Prof.:	Materiale di riporto
C	LASSIFICAZ	ONE GEO	OTECNICA CA	MPIONE R	IMANEGGIAT	0
Classificazione (	geotecnica:	materiale grigio-ma		sso-fine fran	nmisto a sabbi	a limosa
Denomin	azione CE:					
	Categoria:		(UNI EN 13	242)		
Classificazione UI	NI 11531-1:	classe	ND		Ig [	ND
Classificazi	one USCS:		ND			
Prov	re eseguite:	% natura	componenti			
	Note:					
legenda:	ND = NON DET	ERMINATO				
normativa di riferimento:	Raccomanda UNI 11531-1 USCS			Sperimer PeritoA		Direttore Laboratorio



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com



Rapporto di Prova i	1° 51515	pag.	1/1	emesso il 06/07/15
Verbale di Accettazione	n. 18115	data ricevimento campione	17/06/15	data prova 02/07/15
OMMITTENTE:	SINERGEO S	r.l Vicenza		
ANTIERE:	Rif. 9031524 -	Via delle Giare - Fontaniva	a (PD)	
Prelievo de	el: <b>T5</b>	Camp.N°: <b>A</b>	Prof.	: Materiale di riporto
		NATURA COMPO	NENTI	
		natura componenti		%
	Materiali litici, laterizi, refratta	pietrisco, calcestruzzo, ari etc		91,4
	Vetro e scorie	vetrose		2,6
	Conglomerati	bituminosi		0,0
	Altri rifiuti mine	erali		0,0
		eribile: carta, legno, fibre te ci cavi: corrugati, tubi etc.	ssili etc	1,4
	Altri Materiali: lana di roccia e			4,6
lote: come specificato	dalla norma di rif	ferimento, si sono presi in o	considerazione gli el	ementi maggiori a 8 mm

Nott. Pletro Daminato



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova n°	51615		pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data ricev	rimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO	S.r.l Vice	nza			
CANTIERE:	Rif. 9031524	l - Via delle	Giare - Fonta	niva (PD)		
Prelievo del:	Т6		Camp.: /	<b>A</b>	Prof.:	Materiale di riporto
C	LASSIFICAZ	IONE GEO	TECNICA CA	MPIONE R	IMANEGGIAT	0
Classificazione (	geotecnica:	materiale (	di riporto gros	so-fine con	limo sabbioso	grigio-marrone
Denomin	azione CE:					
	Categoria:		(UNI EN 13	242)		
Classificazione UI Classificazi		classe	ND ND		lg [	ND
Prov	re eseguite:	% natura d	componenti			
	Note:					
legenda:	ND = NON DE	TERMINATO				
normativa di riferimento:	Raccomand UNI 11531-1 USCS			Sperimer Perito	' <b>1</b>	Direttore Laboratorio



# GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



Rapporto di Prova nº	51715	pag.	1/1	emesso il	06/07/15
Verbale di Accettazione n.	18115	data ricevimento campione	17/06/15	data prova	02/07/15
COMMITTENTE:	SINERGEO S.r.l.	- Vicenza			
CANTIERE:	Rif. 9031524 - Via	a delle Giare - Fontaniv	a (PD)		
Prelievo del:	Т6	Camp.N°: <b>A</b>	Pro	of.: Materiale d	i riporto
		NATURA COMPO	NENTI		
	na	atura componenti		%	
	Materiali litici, piet laterizi, refrattari e	risco, calcestruzzo, etc		76,7	
	Vetro e scorie vet	rose		0,0	
	Conglomerati bitu	minosi		0,0	
	Altri rifiuti mineral	i		0,0	
		ile: carta, legno, fibre te cavi: corrugati, tubi etc.	essili etc	1,4	
	Altri Materiali: ges lana di roccia etc.			21,9	
<i>Note</i> : come specificato d	alla norma di riferi	mento, si sono presi in	considerazione gli	elementi magg	iori a 8 mm
norma di riferimento: UNI EN 13285	:2004		ne <b>∮</b> tatore Fiore	Direttore L	

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA AUTORIZZAZIONE SCRITTA DELLA GEODATA S.A.S.



### GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: Info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754
www.geodatapadova.com



# Laboratorio concessionato dal Ministero delle Infrastrutture e dei Trasporti ad effettuare e certificare prove geotecniche ai sensi dell'art. 59 del D.P.R. 380/2001

Rapporto di Prova nº	51815		pag.	1/1	emesso il	06/07/15	
Verbale di Accettazione n.	18115	data rice	vimento campione	17/06/15	data prova	02/07/15	
COMMITTENTE:	SINERGEO	S.r.l Vice	enza				
CANTIERE:			Giare - Font	aniva (PD)			
	_			_			
Prelievo del:	T7 		Camp.:	A 	Prof.:	Materiale di riporto	
CLASSIFICAZIONE GEOTECNICA CAMPIONE RIMANEGGIATO							
Classificazione	geotecnica:	materiale grigio-ma		sso-fine frar	nmisto a limo s	abbioso	
Denomin	azione CE:						
	Categoria:		(UNI EN 13	3242)			
Classificazione Ul	NI 11531-1:	classe	ND		lg	ND	
Classificazi	one USCS:		ND				
Prov	ve eseguite:	% natura	componenti				
	Note:						
legenda:	ND = NON DET	ERMINATO					
normativa di riferimento:	Raccomanda UNI 11531-1 USCS			Sperime Perito		Direktore Laboratorio	



# GEODATA S.a.s. di Pietro Daminato & C.

Viale Benelux, 1/C - 35020 Ponte San Nicolò (PD)
Tel. 049 8705575 - Fax 049 7628815 - E-mail: info@geodatapadova.it
C.F. / P. IVA 01370550285 - CCIAA 206643 - Iscr. Tribunale Padova n. 28754 www.geodatapadova.com



Rapporto di Prova n	° 51915	pag.	1/1	emesso il	06/07/15
Verbale di Accettazione i	n. 18115	data ricevimento campione	17/06/15	data prova	02/07/15
MMITTENTE:	SINERGEO S	.r.l Vicenza			
NTIERE:	Rif. 9031524 -	Via delle Giare - Fontaniva	a (PD)		
Prelievo de	i: <b>T7</b>	Camp.N°: <b>A</b>		Prof.: <b>Materiale d</b>	i riporto
		NATURA COMPO	NENTI		
		natura componenti		%	
	Materiali litici, laterizi, refratta	pietrisco, calcestruzzo, ari etc		89,6	
	Vetro e scorie	vetrose		10,0	
	Conglomerati	bituminosi		0,0	
	Altri rifiuti mine	erali		0,0	
	1	eribile: carta, legno, fibre te ici cavi: corrugati, tubi etc.	essili etc	0,1	
	Altri Materiali: lana di roccia	gesso, metalli, etc.		0,3	
ote: come specificato	dalla norma di ri	ferimento, si sono presi in	considerazione	e gli elementi magg	iori a 8 mm

norma di riferimento: UNI EN 13285:2004

Sott. Pietro Daminato

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA AUTORIZZAZIONE SCRITTA DELLA GEODATA s.a.s.

# APPENDICE H Analisi chimiche e test di cessione sui materiali di riporto e sui terreni naturali Rapporti di Prova del laboratorio ARPAV Sinergie geologiche Grambiente

Agenda Regionale uaria Pleta bilancia Protezio de Ambienta d

di Veneta







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438419 rev. 0



438419 Campione numero Richiesta a pagamento

Campione di SUOLO DA SITO CONTAMINATO

Data di ricevimento 16/06/2015 15:44:00

Committente ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD) Prelevatore ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

Verbale di prelievo 2174/15 Data di prelievo 16/06/2015 10:30

ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD) Conferente

Punto di prelievo Veneto Acque via delle Giare - T3/A FONTANIVA (PD)

Procedura Campionamento effettuato come da verbale di campionamento

Analisi Chimiche	Inizio analisi	18/06/2015	Fine analisi 30/07/2015
Nota: nessuno, per la parte, ha preser	ziato all'apertura del campione e inizio	delle operazioni di analisi.	
Parametri	Risultato	Unità di Misura	Metodo di Prova
<b>.</b>			
Aspetto	Sabbioso con scheletro		
Colore	Grigio		
Odore	Non rilevabile		
Residuo secco a 105 °C	92.3	%	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.2
Scheletro	37.7	% s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.1
METALLI			
Antimonio (Sb)	<5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Arsenico (As)	6	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Berillio (Be)	<0.5	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Cadmio (Cd)	<1	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Cobalto (Co)	<5	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Cromo (Cr)	8	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Mercurio (Hg)	<1	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Nichel (Ni)	8	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Piombo (Pb)	15	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Rame (Cu)	24	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99
Selenio (Se)	<3	mg/kg s.s.	Met XI.1 e XI.2+EPA 6010C 2007 DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

Agenzia Regionale can it Programmers Proteziona Ambieata a

ci Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia

Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650

Fax +39 041 5445651 email dlve@arpa.veneto.it

### RAPPORTO DI PROVA nº 438419 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Tallio (TI)	<1	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Vanadio (V)	12	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Zinco (Zn)	59	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cromo VI (Cr)	<1	mg/kg s.s.	CNR IRSA 16 Q 64 Vol 3 1986
Cianuri (CN)	<1.0	mg/kg s.s.	CNR IRSA 17 Q 64 Vol 3 1986
Fluoruri (F)	<10	mg/kg s.s.	CNR IRSA 14 Q 64 Vol 3 1996 + APAT CNR IRSA 4020 Man 29 2003
DIOSSINE E FURANI			
2,3,7,8-TCDD	<0.20	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDD	11.0	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDD	171	ng/kg s.s.	EPA 1613B 1994
2,3,7,8-TCDF	3.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDF	1.74	ng/kg s.s.	EPA 1613B 1994
2,3,4,7,8-PeCDF	2.58	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDF	2.82	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDF	2.04	ng/kg s.s.	EPA 1613B 1994
2,3,4,6,7,8-HxCDF	2.95	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDF	12.6	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8,9-HpCDF	1.92	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDF	24.9	ng/kg s.s.	EPA 1613B 1994
TOTALE I-TE Diossine e Furani	2.91	ng/kg s.s.	EPA 1613B 1994
POLICLOROBIFENILI			
PCB-81	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-77	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-123	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-118	0.64	μg/kg s.s.	EPA 1668C 2010
PCB-114	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-105	0.27	μg/kg s.s.	EPA 1668C 2010
PCB-126	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-167	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-156	0.11	μg/kg s.s.	EPA 1668C 2010
PCB-157	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-169	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-189	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-28	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-52+PCB-69	0.44	μg/kg s.s.	EPA 1668C 2010

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13 Pagina 2 di 5

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenda Regionale carria Processano e Proteziona Ambianta a

ca Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia

Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650

Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438419 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
PCB-95+PCB-98	0.36	μg/kg s.s.	EPA 1668C 2010
PCB-101	0.56	μg/kg s.s.	EPA 1668C 2010
PCB-99	0.22	μg/kg s.s.	EPA 1668C 2010
PCB-110+PCB-82	0.79	μg/kg s.s.	EPA 1668C 2010
PCB-151	0.13	μg/kg s.s.	EPA 1668C 2010
PCB-149+PCB-139	0.62	μg/kg s.s.	EPA 1668C 2010
PCB-146+PCB-160	0.51	μg/kg s.s.	EPA 1668C 2010
PCB-153+PCB-168	1.06	μg/kg s.s.	EPA 1668C 2010
PCB-138	1.11	μg/kg s.s.	EPA 1668C 2010
PCB-128	0.25	μg/kg s.s.	EPA 1668C 2010
PCB-187+PCB-182	0.35	μg/kg s.s.	EPA 1668C 2010
PCB-183	0.11	μg/kg s.s.	EPA 1668C 2010
PCB-177	0.14	μg/kg s.s.	EPA 1668C 2010
PCB-180+PCB-193	0.57	μg/kg s.s.	EPA 1668C 2010
PCB-170	0.27	μg/kg s.s.	EPA 1668C 2010
PCB totali	8.51	μg/kg s.s.	EPA 1668C 2010
IPA			
Benzo(a)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(a)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(b)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(g,h,i)perilene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(k)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Crisene	<0.05	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,e)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dîbenzo(a,h)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,i)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,l)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,h)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Indeno(1,2,3-c,d)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Pirene	<0.05	mg/kg s.s.	ISO 13877 1998
COMPOSTI ORGANOALOGENATI		3.0	
1,1,1-Tricloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1,2,2-Tetracloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1,2-Tricloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1-Dicloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1-Dicloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2,3-Tricloropropano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dibromoetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetilene cis	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetilene trans	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloropropano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Bromodiclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
			–

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

MO47DL_13 Pagina 3 di 5

Agenzia Regionale ushid 3 et abblane s Protezione Ambienta e ci Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia

Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438419 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Cloruro di vinile	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Dibromoclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tetracloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tribromometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tricloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Triclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Sommatoria organoalogenati	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
IDROCARBURI			
ldrocarburi leggeri (C<=12)	<10	mg/kg s.s.	EPA5021A+EPA8015D
IDROCARBURI			
Idrocarburi pesanti (C>12)	<20	mg/kg s.s.	ISO 16703:2004(E)
TEST DI CESSIONE UNI EN 12457-2			
Nitrati (NO3)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Fluoruri (F)	0.70	mg/l	APAT CNR IRSA 4020 Man 29 2003
Solfati (SO4)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cloruri (Cl)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cianuri (CN)	<10	μg/l	APHA Standard Methods for the examination of water and waste water ed 21th. 4500-CN C + 4500-CN E.
Bario (Ba)	0.017	mg/l	UNI EN ISO 17294-2:2005
Rame (Cu)	0.035	mg/l	UNI EN ISO 17294-2:2005
Zinco (Zn)	0.020	mg/l	UNI EN ISO 17294-2:2005
Berillio (Be)	<1	μg/l	UNI EN ISO 17294-2:2005
Cobalto (Co)	<5	µg/l	UNI EN ISO 17294-2:2005
Nichel (Ni)	<5	μg/l	UNI EN ISO 17294-2:2005
Vanadio (V)	10	μg/l	UNI EN ISO 17294-2:2005
Arsenico (As)	12	μ <b>g</b> /l	UNI EN ISO 17294-2:2005
Cadmio (Cd)	<1	μ <b>g</b> /l	UNI EN ISO 17294-2:2005
Cromo (Cr)	<10	μg/l	UNI EN ISO 17294-2:2005
Piombo (Pb)	7	μ <b>g</b> /l	UNI EN ISO 17294-2:2005
Selenio (Se)	<5	μg/l	UNI EN ISO 17294-2:2005
Mercurio (Hg)	<1	μg/l	UNI EN ISO 17294-2:2005
C.O.D.	23	mg/l O2	ISO 15705:2002
Н	8.4	unità di pH	APAT CNR IRSA 2060 Man 29 2003, Rapporti ISTISAN 2007/31 pag 68 Met ISS BCA 023

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13 Pagina 4 di 5

Agendia Regionale urric Pleyr binne r Proteziant Ambiento :

ati Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438419 rev. 0



### Giudizio di conformità

### Analisi Chimiche

### Verifica di conformità ai sensi del D.Lgs 152/06

Le concentrazioni dei parametri analizzati sono inferiori alle Concentrazioni Soglia di Contaminazione (CSC) fissate dal D.Lgs. 03/04/06 n° 152, Parte IV, Titolo V, All. 5, Tab. 1, Col. A (Siti ad uso verde pubblico, privato e residenziale).

### Verifica dell'ammissibilità al recupero ai sensi del D.M. 05/02/1998

L'eluato del test di eluizione, effettuato secondo la norma UNI EN 12457-2:2004, è conforme ai valori limite fissati dal D. M. 05/02/1998, All. 3.

Venezia, li 30/07/2015

Il Dirigente Chimico F.to dr. Michele Gerotto

ACENTIA Recipiale der ta Processimne d Protezio de Ambiento d

C. Veneto.







Dipartimento Regionale Laboratori Servizio I aboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438421 rev. 0



438421 Campione numero Richiesta a pagamento

Campione di SUOLO DA SITO CONTAMINATO

Data di ricevimento 16/06/2015 15:44:00

ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD) Committente Prelevatore ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

2174/15 Verbale di prelievo Data di prelievo 16/06/2015 10:30

ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD) Conferente

Punto di prelievo Veneto Acque via delle Giare - T3/A t.q FONTANIVA (PD)

Procedura Campionamento effettuato come da verbale di campionamento

Analisi Chimiche 18/06/2015 Inizio analisi Fine analisi 30/07/2015

Nota: nessuno, per la parte, ha presenziato all'apertura del campione e inizio delle operazioni di analisi.

Parametri Risultato Unità di Misura Metodo di Prova

Aspetto Sabbioso con abbondante scheletro molto al di sopra del diametro di due centimetri

Marrone Grigio

<5

Odore Non rilevabile Residuo secco a 105 °C 91.3 % DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.2 Scheletro 44 8 % s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.1

**METALLI** Antimonio (Sb)

Colore

Met XI.1 e XI.2+EPA 6010C 2007 Arsenico (As) 6 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007

mg/kg s.s.

Berillio (Be) <0.5 mg/kg s.s. DM 13/09/99 SO nº 185 GU nº 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007

Cadmio (Cd) <1 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007 Cobalto (Co) <5 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99

Met XI.1 e XI.2+EPA 6010C 2007 Cromo (Cr) 8 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99

Mercurio (Hg) <1 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007

Nichel (Ni) 8 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007

Piombo (Pb) 15 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007 Rame (Cu) 25 mg/kg s.s. DM 13/09/99 SO n° 185 GU n° 248 21/10/99

Met XI.1 e XI.2+EPA 6010C 2007

Met XI.1 e XI.2+EPA 6010C 2007

DM 13/09/99 SO n° 185 GU n° 248 21/10/99

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL 13

I risultati analitici si riferiscono unicamente al campione sottonosto a prova

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Red (male urraPosity mne s Proteziona Ambienta a

ait Wenete







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dlve@arpa.veneto.it

### RAPPORTO DI PROVA nº 438421 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Selenio (Se)	<3	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Tallio (TI)	<1	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Vanadio (V)	12	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Zinco (Zn)	58	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cromo VI (Cr)	<1	mg/kg s.s.	CNR IRSA 16 Q 64 Vol 3 1986
Clanuri (CN)	<1.0	mg/kg s.s.	CNR IRSA 17 Q 64 Vol 3 1986
Fluoruri (F)	<10	mg/kg s.s.	CNR IRSA 14 Q 64 Vol 3 1996 + APAT CNR IRSA 4020 Man 29 2003
DIOSSINE E FURANI			
2,3,7,8-TCDD	<0.20	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDD	11.4	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDD	193	ng/kg s.s.	EPA 1613B 1994
2,3,7,8-TCDF	<0.20	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDF	1.25	ng/kg s.s.	EPA 1613B 1994
2,3,4,7,8-PeCDF	1.69	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDF	2.22	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDF	1.61	ng/kg s.s.	EPA 1613B 1994
2,3,4,6,7,8-HxCDF	2.34	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDF	13.5	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8,9-HpCDF	1.79	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDF	23.5	ng/kg s.s.	EPA 1613B 1994
TOTALE I-TE Diossine e Furani	2.01	ng/kg s.s.	EPA 1613B 1994
POLICLOROBIFENILI	2.42		
PCB-81	<0.10	µg/kg s.s. 	EPA 1668C 2010
PCB-77	<0.10	μg/kg s.s. 	EPA 1668C 2010
PCB-123	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-118 PCB-114	0.75	μg/kg s.s.	EPA 1668C 2010
	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-105 PCB-126	0.30	μg/kg s.s.	EPA 1668C 2010
PCB-120	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-167 PCB-156	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-157	0.11	μg/kg s.s.	EPA 1668C 2010
PCB-169	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-189	<0.10	μg/kg s.s.	EPA 1668C 2010
1 05-103	<0.10	μg/kg s.s.	EPA 1668C 2010

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Autožia Reconale Large Place Mannels Proteziona Ambianta a ci. Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438421 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
PCB-28	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-52+PCB-69	0.48	μg/kg s.s.	EPA 1668C 2010
PCB-95+PCB-98	0.46	μg/kg s.s.	EPA 1668C 2010
PCB-101	0.70	μg/kg s.s.	EPA 1668C 2010
PCB-99	0.27	μg/kg s.s.	EPA 1668C 2010
PCB-110+PCB-82	0.97	μg/kg s.s.	EPA 1668C 2010
PCB-151	0.12	μg/kg s.s.	EPA 1668C 2010
PCB-149+PCB-139	0.61	μg/kg s.s.	EPA 1668C 2010
PCB-146+PCB-160	0.54	μg/kg s.s.	EPA 1668C 2010
PCB-153+PCB-168	1.04	μg/kg s.s.	EPA 1668C 2010
PCB-138	1.15	μg/kg s.s.	EPA 1668C 2010
PCB-128	0.26	μg/kg s.s.	EPA 1668C 2010
PCB-187+PCB-182	0.30	μg/kg s.s.	EPA 1668C 2010
PCB-183	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-177	0.11	μg/kg s.s.	EPA 1668C 2010
PCB-180+PCB-193	0.50	μg/kg s.s.	EPA 1668C 2010
PCB-170	0.22	μg/kg s.s.	EPA 1668C 2010
PCB totali	8.89	µg/kg s.s.	EPA 1668C 2010
IPA			
Benzo(a)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(a)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(b)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(g,h,i)perilene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(k)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Crisene	<0.05	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,e)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,h)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,i)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,I)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,h)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Indeno(1,2,3-c,d)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Pirene	<0.05	mg/kg s.s.	ISO 13877 1998
IDROCARBURI			
Idrocarburi pesanti (C>12)	<20	mg/kg s.s.	ISO 16703:2004(E)
TEST DI CESSIONE UNI EN 12457-2			
Nitrati (NO3)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Fluoruri (F)	0.65	mg/l	APAT CNR IRSA 4020 Man 29 2003
Solfati (SO4)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cloruri (Cl)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cianuri (CN)	<10	μg/l	APHA Standard Methods for the examination
		, 0	of water and waste water ed 21th. 4500-CN C + 4500-CN E.
Bario (Ba)	0.023	mg/l	UNI EN ISO 17294-2:2005

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13

I risultati analitici si riferiscono unicamente al campione sottoposto a prova,

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Beg ande ച്നമ∮കുന്നി**നെ**ം ഉ Proteziona Ambienta a di Veneto







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dlve@arpa.veneto.it

### RAPPORTO DI PROVA nº 438421 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Rame (Cu)	0.036	mg/l	UNI EN ISO 17294-2:2005
Zinco (Zn)	0.029	mg/l	UNI EN ISO 17294-2:2005
Berillio (Be)	<1	μg/l	UNI EN ISO 17294-2:2005
Cobalto (Co)	<5	μg/l	UNI EN ISO 17294-2:2005
Nichel (Ni)	<5	μg/l	UNI EN ISO 17294-2:2005
Vanadio (V)	10	μg/l	UNI EN ISO 17294-2:2005
Arsenico (As)	14	µg/l	UNI EN ISO 17294-2:2005
Cadmio (Cd)	<1	μg/l	UNI EN ISO 17294-2:2005
Cromo (Cr)	<10	μg/l	UNI EN ISO 17294-2:2005
Piombo (Pb)	12	μg/l	UNI EN ISO 17294-2:2005
Selenio (Se)	<5	μ <b>g</b> /l	UNI EN ISO 17294-2:2005
Mercurio (Hg)	<1	μg/l	UNI EN ISO 17294-2:2005
C.O.D.	24	mg/i O2	ISO 15705:2002
pH	8.5	unità di pH	APAT CNR IRSA 2060 Man 29 2003, Rapporti ISTISAN 2007/31 pag 68 Met ISS BCA 023

### Giudizio di conformità

### Analisi Chimiche

### Verifica di conformità ai sensi del D.Lgs 152/06

Le concentrazioni dei parametri analizzati sono inferiori alle Concentrazioni Soglia di Contaminazione (CSC) fissate dal D.Lgs. 03/04/06 nº 152, Parte IV, Titolo V, All. 5, Tab. 1, Col. A (Siti ad uso verde pubblico, privato e residenziale).

### Verifica dell'ammissibilità al recupero ai sensi del D.M. 05/02/1998

L'eluato del test di eluizione, effettuato secondo la norma UNI EN 12457-2:2004, è conforme ai valori limite fissati dal D. M. 05/02/1998, All. 3.

Venezia, li 30/07/2015

Il Dirigente Chimico F.to dr. Michele Gerotto

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13

Agenda Regionale de la Piere pione e Protezione Ambienta d en Moneto





Met XI.1 e XI.2+EPA 6010C 2007



Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438422 rev. 0



Campione numero 438422 Richiesta a pagamento

Campione di SUOLO DA SITO CONTAMINATO

Data di ricevimento 16/06/2015 15:44:00

Committente ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

Prelevatore ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

Verbale di prelievo Data di prelievo 16/06/2015 10:30

Conferente ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

Punto di prelievo Veneto Acque via delle Giare - T3/B FONTANIVA (PD)

Procedura di campionamento Campionamento effettuato come da verbale

Analisi Chimiche Inizio analisi 18/06/2015 Fine analisi 30/07/2015

Nota: nessuno, per la parte, ha presenziato all'apertura del campione e inizio delle operazioni di analisi.

Parametri	Risultato	Unità di Misura	Metodo di Prova
Aspetto	Sabbioso con scheletro		
Colore	Grigio chiaro		
Odore	Non rilevabile		
Residuo secco a 105 °C	96.5	%	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.2
Scheletro	35.8	% s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met II.1
METALLI			
Antimonio (Sb)	<5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Arsenico (As)	<5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Berillio (Be)	<0.5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cadmio (Cd)	<1	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cobalto (Co)	<5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cromo (Cr)	5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Mercurio (Hg)	<1	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Nichel (Ni)	5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Piombo (Pb)	6	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Rame (Cu)	5	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Selenio (Se)	<3	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13 Pagina 1 di 5

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua ernissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Beg phale carrie 3 et a proposia Proteziona Ambienta a di Venete







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438422 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Tallio (TI)	<1	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Vanadio (V)	7	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Zinco (Zn)	21	mg/kg s.s.	DM 13/09/99 SO n° 185 GU n° 248 21/10/99 Met XI.1 e XI.2+EPA 6010C 2007
Cromo VI (Cr)	<1	mg/kg s.s.	CNR IRSA 16 Q 64 Vol 3 1986
Cianuri (CN)	<1.0	mg/kg s.s.	CNR IRSA 17 Q 64 Vol 3 1986
Fluoruri (F)	<10	mg/kg s.s.	CNR IRSA 14 Q 64 Vol 3 1996 + APAT CNR IRSA 4020 Man 29 2003
DIOSSINE E FURANI			
2,3,7,8-TCDD	<0.20	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDD	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDD	<2.00	ng/kg s.s.	EPA 1613B 1994
2,3,7,8-TCDF	<0.20	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8-PeCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
2,3,4,7,8-PeCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,6,7,8-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
2,3,4,6,7,8-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,7,8,9-HxCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8-HpCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,7,8,9-HpCDF	<1.00	ng/kg s.s.	EPA 1613B 1994
1,2,3,4,6,7,8,9-OCDF	<2.00	ng/kg s.s.	EPA 1613B 1994
POLICLOROBIFENILI			
PCB-81	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-77	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-123	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-118	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-114	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-105	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-126	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-167	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-156	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-157	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-169	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-189	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-28	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-52+PCB-69	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-95+PCB-98	<0.10	μg/kg s.s.	EPA 1668C 2010

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

MO47DL_13 Pagina 2 di 5

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agendia Regionale เล้าสริงของกั<mark>กก</mark>จา Proteziona Ambianta a









Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dlve@arpa.veneto.it

### RAPPORTO DI PROVA nº 438422 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
PCB-101	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-99	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-110+PCB-82	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-151	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-149+PCB-139	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-146+PCB-160	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-153+PCB-168	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-138	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-128	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-187+PCB-182	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-183	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-177	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-180+PCB-193	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB-170	<0.10	μg/kg s.s.	EPA 1668C 2010
PCB totali	<0.10	µg/kg s.s.	EPA 1668C 2010
IPA			
Benzo(a)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(a)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(b)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(g,h,i)perilene	<0.05	mg/kg s.s.	ISO 13877 1998
Benzo(k)fluorantene	<0.05	mg/kg s.s.	ISO 13877 1998
Crisene	<0.05	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,e)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,h)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,i)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,I)pirene	<0.10	mg/kg s.s.	ISO 13877 1998
Dibenzo(a,h)antracene	<0.05	mg/kg s.s.	ISO 13877 1998
Indeno(1,2,3-c,d)pirene	<0.05	mg/kg s.s.	ISO 13877 1998
Pirene	<0.05	mg/kg s.s.	ISO 13877 1998
COMPOSTI ORGANOALOGENATI			
1,1,1-Tricloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1,2,2-Tetracloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1,2-Tricloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1-Dicloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,1-Dicloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2,3-Tricloropropano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dibromoetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetilene cis	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloroetilene trans	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
1,2-Dicloropropano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Bromodiclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Cloruro di vinile	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

MO47DL_13 Pagina 3 di 5

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agendia Bag bhale ະຄົດ ^ຈະຕວນ **ກາ**ດ ຄ Protezione Ambienta e di Venero







Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438422 rev. 0



Parametri	Risultato	Unità di Misura	Metodo di Prova
Dibromoclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tetracloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tribromometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Tricloroetilene	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Triclorometano	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
Sommatoria organoalogenati	<0.10	mg/kg s.s.	EPA 5035 + EPA 8260C
IDROCARBURI			
ldrocarburi leggeri (C<=12)	<10	mg/kg s.s.	EPA5021A+EPA8015D
IDROCARBURI			
Idrocarburi pesanti (C>12) TEST DI CESSIONE UNI EN 12457-2	<20	mg/kg s.s.	ISO 16703:2004(E)
Nitrati (NO3)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Fluoruri (F)	<0.5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Solfati (SO4)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cloruri (CI)	<5	mg/l	APAT CNR IRSA 4020 Man 29 2003
Cianuri (CN)	<10	μg/l	APHA Standard Methods for the examination of water and waste water ed 21th. 4500-CN C + 4500-CN E.
Bario (Ba)	<0.010	mg/l	UNI EN ISO 17294-2:2005
Rame (Cu)	<0.010	mg/l	UNI EN ISO 17294-2:2005
Zinco (Zn)	<0.010	mg/l	UNI EN ISO 17294-2:2005
Berillio (Be)	<1	μg/l	UNI EN ISO 17294-2:2005
Cobalto (Co)	<5	μg/l	UNI EN ISO 17294-2:2005
Nichel (Ni)	<5	μg/l	UNI EN ISO 17294-2:2005
Vanadio (V)	<5	μg/l	UNI EN ISO 17294-2:2005
Arsenico (As)	7	μg/l	UNI EN ISO 17294-2:2005
Cadmio (Cd)	<1	μg/l	UNI EN ISO 17294-2:2005
Cromo (Cr)	<10	μg/l	UNI EN ISO 17294-2:2005
Piombo (Pb)	<5	μg/l	UNI EN ISO 17294-2:2005
Selenio (Se)	<5	μg/l	UNI EN ISO 17294-2:2005
Mercurio (Hg)	<1	μg/l	UNI EN ISO 17294-2:2005
C.O.D.	7	mg/l O2	ISO 15705:2002
pH	8.8	unità di pH	APAT CNR IRSA 2060 Man 29 2003, Rapporti ISTISAN 2007/31 pag 68 Met ISS BCA 023

### Giudizio di conformità

### Analisi Chimiche

### Verifica di conformità ai sensi del D.Lgs 152/06

Le concentrazioni dei parametri analizzati sono inferiori alle Concentrazioni Soglia di Contaminazione (CSC) fissate dal D.Lgs. 03/04/06 n° 152, Parte IV, Titolo V, All. 5, Tab. 1, Col. A (Siti ad uso verde pubblico, privato e residenziale).

### Verifica dell'ammissibilità al recupero ai sensi del D.M. 05/02/1998

L'eluato del test di eluizione, effettuato secondo la norma UNI EN 12457-2:2004, è conforme ai valori limite fissati dal D. M. 05/02/1998, All. 3.

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993,

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agendia Regionale us dia Processione si Prozezione Ambienta e di Veneto

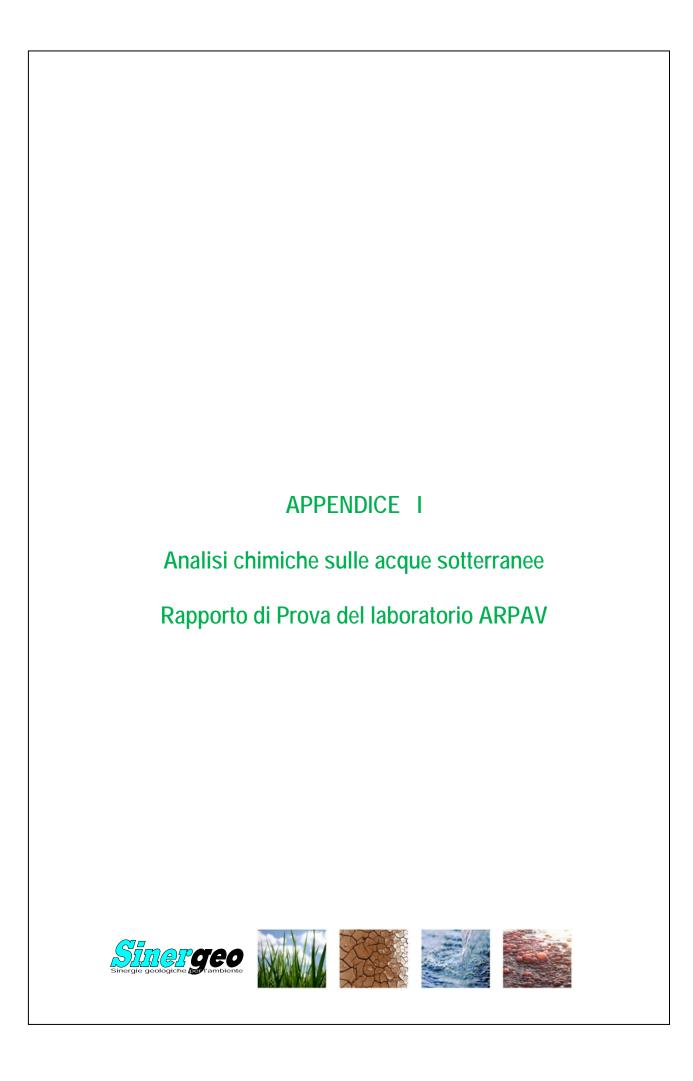






Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 438422 rev. 0




Venezia, li 30/07/2015

Il Dirigente Chimico F.to dr. Michele Gerotto

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13 Pagina 5 dì 5



### **ARPAY**

Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto



Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650 Fax +39 041 5445651

email dive@arpa.veneto.it

# RAPPORTO DI PROVA nº 444085 rev. 0



Campione numero

444085

Richiesta a pagamento

Campione di

ACQUE SOTTERRANEE CONTAMINATE piezometro PZ1

Data di ricevimento

16/07/2015 12:30:00

Committente Prelevatore

ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)
ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

ARPAV - DAP PADOVA - SERVIZIO CONTROLLO AMBIENTALE - VIA OSPEDALE 22 - PADOVA(PD)

Verbale di prelievo

2217/15

Data di prelievo

6/07/2015

10:00

Conferente

Veneto Acque via delle Giare - TRATTA 34 FONTANIVA (PD)

Punto di prelievo Procedura

di campianamente

di campionamento

Campionamento effettuato come da verbale

Servizio Laboratorio di Venezia sede operativa di Venezia

Analisi Chimiche

Inizio analisi

17/07/2015

Fine analisi

02/09/2015

Responsabile delle analisi dr. Luciana Menegus

Nessuno per la parte ha presenziato all'apertura del campione e alle successive operazioni d'analisi.

Parametri	Risultato	Unità di Misura	Metodo di Prova
Alluminio disciolto (AI)	3	μg/l	UNI EN ISO 17294-2:2005
Argento disciolto (Ag)	<1	μg/l	UNI EN ISO 17294-2:2005
Arsenico disciolto (As)	· 1	μg/l	UNI EN ISO 17294-2:2005
Berillio disciolto (Be)	<1	μg/l	UNI EN ISO 17294-2:2005
Cadmio disciolto (Cd)	<0.1	μg/l	UNI EN ISO 17294-2:2005
Cobalto disciolto (Co)	<1	µg/l	UNI EN ISO 17294-2:2005
Cromo (Cr)	<0.5	µg/l	UNI EN ISO 17294-2:2005
Rame disciolto (Cu)	3	μg/l	UNI EN ISO 17294-2:2005
Mercurio disciolto (Hg)	<0.2	µg/l	UNI EN ISO 17294-2:2005
Manganese disclolto (Mn)	. 19	µg/l	UNI EN ISO 17294-2:2005
Nichel disciolto (Ni)	<1	μg/l	UNI EN ISO 17294-2:2005
Piombo disciolto (Pb)	<0.5	μg/l	UNI EN ISO 17294-2:2005
Antimonio disciolto (Sb)	<1 ·	μg/I	UNI EN ISO 17294-2:2005
Selenio disciolto (Se)	<5	μg/l	UNI EN ISO 17294-2:2005
Tallio (TI)	<1	μg/l	UNI EN ISO 17294-2:2005
Zinco disciolto (Zn)	<5	μg/l	UNI EN ISO 17294-2:2005
Ferro disclolto (Fe)	14	μg/l	UNI EN ISO 17294-2:2005
Benzene	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
Toluene	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
Etilbenzene	0.12	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
Xileni (o+m+p)	0.10	μ <b>g/</b> l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
Stirene	<0.03	μg/Ι	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
COMPOSTI ORGANOALOGENAT	1		
Sommatoria organoalogenati	<1.00	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre

Tel. +39 041 5445650

Fax +39 041 5445651 email dlve@arpa.veneto.it

### RAPPORTO DI PROVA nº 444085 rev. 0





Parametri	Risultato	Unità di Misura	Metodo di Prova
ribromometano	<0.30	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-21
riclorometano	<0.10	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
Pibromoclorometano	<0.10	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
romodiclorometano	<0.10	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
etracloroetilene	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED, on-line 16-2
ricloroetilene	<0.05	μg/i	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
loruro di vinile	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2-Dicloroetano	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,1,2-Tricloroetano	<0.10	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,1,2,2-Tetracloroetano	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,1-Dicloroetilene	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2-Dicloroetilene cls	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
2-Dicloroetilene trans	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2-Dicloroetilene (somma cis+trans)	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2-Dicloropropano	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,1-Dicloroetano	<0.05	μg/l ·	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2-Dibromoetano	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
,2,3-Tricloropropano	<0.03	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
saclorobutadiene	<0.05	μg/l	Notiziario IRSA n. 1 (2005) ED. on-line 16-2
DIOSSINE E FURANI	•	•	•
,3,7,8-TCDD	<1.0	pg/l	EPA 1613B 1994
,2,3,7,8-PeCDD	<5.0	pg/l	EPA 1613B 1994
,2,3,4,7,8-HxCDD	<5.0	pg/l	EPA 1613B 1994
,2,3,6,7,8-HxCDD	<5.0	pg/l	EPA 1613B 1994
,2,3,7,8,9-HxCDD	<5.0	pg/l	EPA 1613B 1994
,2,3,4,6,7,8-HpCDD	<5.0	pg/l	EPA 1613B 1994
,2,3,4,6,7,8,9-OCDD	<10.0	pg/l	EPA 1613B 1994
,3,7,8-TCDF	<1.0	pg/l	EPA 1613B 1994
,2,3,7,8-PeCDF	<5.0	pg/l	EPA 1613B 1994
,3,4,7,8-PeCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,4,7,8-HxCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,6,7,8-HxCDF	<5.0	pg/l	EPA 1613B 1994
,3,4,6,7,8-HxCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,7,8,9-HxCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,4,6,7,8-HpCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,4,7,8,9-HpCDF	<5.0	pg/l	EPA 1613B 1994
,2,3,4,6,7,8,9-OCDF	<10.0	pg/l	EPA 1613B 1994
OTALE I-TE Diossine e Furani	•	pg/l	EPA 1613B 1994
CB totali	<0.01	μg/l	EPA 3510C + 8270D
PCB-28	<0.01	μg/l	EPA 3510C + 8270D
CB-52	<0.01	μg/l	EPA 3510C + 8270D
PCB-77	<0.01	μg/l	EPA 3510C + 8270D
PCB-81	<0.01	μg/l	EPA 3510C + 8270D
PCB-95	<0.01	μ <b>g</b> /l	EPA 3510C + 8270D

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

ezione Ambientale Veneto

Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650 Fax +39 041 5445651

email dive@arpa.veneto.it

Dipartimento Regionale Laboratori



## RAPPORTO DI PROVA nº 444085 rev. 0



PCB-99 PCB-101 PCB-105 PCB-110 PCB-118 PCB-118 PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-151 PCB-157 PCB-167 PCB-167 PCB-169 PCB-170 PCB-180 PCB-180 PCB-183	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	hây hây hây hây hây hây	EPA 3510C + 8270D
PCB-105 PCB-110 PCB-118 PCB-114 PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-146 PCB-151 PCB-153 PCB-157 PCB-166 PCB-157 PCB-167 PCB-169 PCB-177 PCB-189	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	hây hây hây hây hây	EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D
PCB-110 PCB-118 PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-157 PCB-157 PCB-157 PCB-157 PCB-169 PCB-170 PCB-170 PCB-180 PCB-183 PCB-183 PCB-183 PCB-189	<0.01 <0.01 <0.01 <0.01 <0.01	hây hây hây hây	EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D
PCB-118 PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-153 PCB-156 PCB-167 PCB-167 PCB-167 PCB-167 PCB-167 PCB-189	<0.01 <0.01 <0.01 <0.01 <0.01	hâ\J hâ\J hâ\J	EPA 3510C + 8270D EPA 3510C + 8270D EPA 3510C + 8270D
PCB-114 PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-157 PCB-167 PCB-167 PCB-167 PCB-169 PCB-170 PCB-170 PCB-180 PCB-180 PCB-189	<0.01 <0.01 <0.01 <0.01 <0.01	hâ\  hâ\  hâ\	EPA 3510C + 8270D EPA 3510C + 8270D
PCB-123 PCB-126 PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-153 PCB-157 PCB-167 PCB-167 PCB-167 PCB-169 PCB-170 PCB-170 PCB-180 PCB-180 PCB-183 PCB-189	<0.01 <0.01 <0.01	μg/l μg/l	EPA 3510C + 8270D
PCB-126 PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-153 PCB-156 PCB-157 PCB-167 PCB-167 PCB-169 PCB-170 PCB-170 PCB-180 PCB-180 PCB-189	<0.01 <0.01	μg/l	
PCB-128 PCB-138 PCB-146 PCB-149 PCB-151 PCB-153 PCB-156 PCB-157 PCB-167 PCB-167 PCB-169 PCB-170 PCB-180 PCB-183 PCB-183 PCB-183 PCB-187 PCB-189	<0.01		
CB-138 CB-146 CB-149 CB-151 CB-153 CB-156 CB-157 CB-167 CB-169 CB-170 CB-170 CB-180 CB-183 CB-183		uu/l	EPA 3510C + 8270D
CB-146 CB-149 CB-151 CB-153 CB-156 CB-157 CB-167 CB-169 CB-170 CB-180 CB-183 CB-187	<0.01	μ <b>g/</b> l	EPA 3510C + 8270D
CB-149 CB-151 CB-153 CB-156 CB-157 CB-167 CB-169 CB-177 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-151 CB-153 CB-156 CB-157 CB-167 CB-169 CB-170 CB-177 CB-180 CB-183 CB-187	<0.01	μ <b>g/</b> l	EPA 3510C + 8270D
CB-153 CB-156 CB-157 CB-167 CB-169 CB-170 CB-177 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-156 CB-157 CB-167 CB-169 CB-170 CB-177 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-157 CB-167 CB-169 CB-170 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-167 CB-169 CB-170 CB-177 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-169 CB-170 CB-177 CB-180 CB-183 CB-187	<0.01	μg/l	EPA 3510C + 8270D
CB-170 CB-177 CB-180 CB-183 CB-187 CB-189	<0.01	μg/l	EPA 3510C + 8270D
CB-177 CB-180 CB-183 CB-187 CB-189	<0.01	μg/l	EPA 3510C + 8270D
CB-180 CB-183 CB-187 CB-189	<0.01	μ <b>g</b> /l	EPA 3510C + 8270D
CB-183 CB-187 CB-189	<0.01	μg/l	EPA 3510C + 8270D
CB-187 CB-189	<0.01	μg/l	EPA 3510C + 8270D
CB-189	<0.01	μg/l	EPA 3510C + 8270D
· ·	<0.01	μg/l	EPA 3510C + 8270D
an	<0.01	μg/I	EPA 3510C + 8270D
CB-194	<0.01	μ <b>g/</b> l	EPA 3510C + 8270D
CB-209	<0.01	μg/l	EPA 3510C + 8270D
DROCARBURI POLICICLICI AROMATIC	CI .		
PA somma composti (31,32,33,36)	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
enzo(a)antracene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
enzo(a)pirene	<0.005	μ <b>g/</b> l	APAT CNR IRSA 5080 Man 29 2003
enzo(b)fluorantene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
enzo(ghi)perilene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
enzo(k)fluorantene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
risene	<0.005	μ <b>g</b> /l	APAT CNR IRSA 5080 Man 29 2003
lbenzo(ah)antracene	<0.005	μ <b>g</b> /l	APAT CNR IRSA 5080 Man 29 2003
ideno(1,2,3-c,d)pirene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
lrene	<0.005	μg/l	APAT CNR IRSA 5080 Man 29 2003
onducibilità elettrica a 20 °C	507	μS cm-1	APAT CNR IRSA 2030 Man 29 2003, Rapport
luoruri (F)	93	μ <b>g/</b> Ι	ISTISAN 2007/31 pag 55 Met ISS BDA 022 APAT CNR IRSA 4020 Man 29 2003, Rapport
romo VI (Cr)	<5		ISTISAN 2007/31 pag 115 Met ISS CBB 037
ianuri (CN)	<10	hâ\J hâ\J	APAT IRSA CNR 3150 C Man 29 2003 APHA Standard Methods for the examination of water and waste water ed 21th. 4500-CN

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

I risultati analitici si riferiscono unicamente al campione sottoposto a prova.

Il presente rapporto di prova non può essere riprodotto parzialmente, senza approvazione scritta di questo laboratorio ed è conservato con la documentazione correlata per dieci (10) anni dalla data della sua emissione, fatto salvo eventuali procedimenti sanzionatori.

Agenzia Regionale per la Prevenzione e Protezione Ambientale de Veneto



Dipartimento Regionale Laboratori Servizio Laboratorio di Venezia sede operativa di Venezia Via Lissa, 6 - 30171 Venezia Mestre Tel. +39 041 5445650 Fax +39 041 5445651 email dive@arpa.veneto.it

### RAPPORTO DI PROVA nº 444085 rev. 0



Servizio Laboratorio di Venezia Campione figlio numero 444086

sede operativa di Treviso

Analisi Chimiche Inizio analisi 17/07/2015 Fine analisi 31/07/2015

Responsabile delle analisi dr. Alfredo Mussato

Nessuno per la parte ha presenziato all'apertura del campione e alle successive operazioni d'analisi.

Il metodo EPA 1613B 1994 corregge automaticamente i risultati delle prove per il recupero.

Parametri Risultato Metodo di Prova Unità di Misura <20 EPA 5030B + EPA 8260C Idrocarburi leggeri come n-esano (somma μg/l UNI EN ISO 9377-2:2002 Indice Idrocarburi come n-esano (somma <100 μg/l C11-C39) Idrocarburi totali come n-esano (calcolo) UNI EN ISO 9377-2:2002 + EPA 5030B + EPA <100 μg/I

Giudizio di conformità

AnalisiChim iche

Tutti i valori dei parametri analizzati sono conformi ai limiti previsti dal D. Lgs. 03/04/06 n. 152, Parte IV, Titolo V, All. 5, Tab. 2 ( concentrazione soglia di contaminazione nelle acque sotterranee).

Venezia, li 02/09/2015

Il Dirigente Chimico F.to dr. Luciana Menegus

Nel rapporto di prova la firma autografa è sostituita dall'indicazione del nominativo a mezzo stampa ai sensi dell'art. 3, comma 2, del D. Lgs. 39/1993.

MO47DL_13 Pagina 4 di 4